搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铀铌合金神经网络势函数构建及其低温时效性质的分子动力学研究

苏锐 李庆安 管鹏飞

引用本文:
Citation:

铀铌合金神经网络势函数构建及其低温时效性质的分子动力学研究

苏锐, 李庆安, 管鹏飞

Neural Network Potential for Uranium-Niobium Alloy and Molecular Dynamics Study of Its Low-Temperature Aging Behaviors

Su Rui, Li Qingan, Guan Pengfei
PDF
导出引用
  • 铀铌合金在不同实验环境中呈现出复杂的晶体相和独特的力学性能,但原子尺度的相析出和形变损伤机制尚不清楚,其根本原因是缺乏支撑大尺度分子动力学模拟的精确铀铌合金原子相互作用势。本工作基于自主开发的神经网络势能函数及随机搜索方法,构建了覆盖全化学空间的铀铌合金第一性原理计算数据库,并基于神经网络框架建立了具有较高泛化性能和精度的铀铌二元体系机器学习势函数,其能量和力的测试平均绝对误差分别为5.6 meV/atom和0.095 eV/Å,可以精确地描述不同化学成分铀铌合金的晶体空间结构,状态方程及热力学参量。基于该势函数,我们实现了低温时效下铀铌合金相失稳分解过程的原子尺度模拟,初步阐明了Nb析出相对其合金力学性能的影响及原子响应机制。
    Uranium-niobium alloys exhibit complex crystal phases and unique mechanical behaviors under various thermodynamic states and external loadings. However, the lack of accurate interatomic potentials hinders people’s understanding of the atomic-scale phase behaviors and dynamical processes in this important alloy. In recent years, the development of machine-learning-based force fields has provided a systematic way to generate accurate interatomic potentials on large and complex first-principle-based datasets. However, this crucial nuclear material has received limited attention from researchers in the field of machine-learning potentials.
    In this work, based on our previous development of the neural-network potential training and evaluation framework, which we called NNAP, a new neural network potential is constructed for the uranium-niobium alloy system. We employ a combination of random structure search and active learning algorithms to enhance coverage of the chemical and structural space of the alloy system. Testing of the generated potential demonstrates high generalization performance and accuracy. The mean absolute errors in energy and force are 5.6 meV/atom and 0.095 eV/Å on the testing set, respectively. Further calculation results of crystal structure parameters, equation of state and phonon dispersions coincide well with the first-principle or experimental references.
    Based on the newly trained potential, we investigated the atomic-scale evolution of the spinodal decomposition process in the U-Nb alloys. We show that the atom-swapping hybrid Monte Carlo can be a powerful tool to understand the thermodynamic evolution of the systems. By employ the atom-swapping hybrid Monte Carlo method, the potential energy reduce due to phase segregation is captured within 5000 steps, while no significant energy reduction is found after 3 ns MD simulation. Finally, we calculate the stress-strain curves under shear loading for different initial states. We found that the Nb precipitation generated strengthened phases in the alloy and significantly changed the deformation behavior of U-Nb alloys, where a disorder shear band emerges in the deformation path of the γ phase alloys. Our work lays a new foundation to understand the mechanical processes in this important alloy system.
  • [1]

    Vandermeer R A 1980 Acta Metall. 28 383

    [2]

    Clarke A J, Field R D, Hackenberg R E, Thoma D J, Brown D W, Teter D F, Miller M K, Russell K F, Edmonds D V, Beverini G 2009 J. Nucl. Mater. 393 282

    [3]

    Vandermeer R A, Ogle J C, Snyder W B 1978 Scr. Metall. 12 243

    [4]

    Field R D, Brown D W, Thoma D J 2005 Philos. Mag.85 2593

    [5]

    Zhang C, Wang H, Li J, Pang B, Xia Y, Liu Y, Sun G, Zhang X, Fa T, Wang X 2019 Mater. Des. 162 94

    [6]

    Choung S, Park W, Moon J, Han J W 2024 Chem. Eng. J. 494 152757

    [7]

    Ma S, Liu Z P 2020 ACS Catal. 10 13213

    [8]

    Su R, Yu J, Guan P, Wang W 2024 Sci. China Mater.67 3298

    [9]

    Shapeev A V 2016 Multiscale Model. Simul. 14 1153

    [10]

    Artrith N, Urban A, Ceder G 2018 J. Chem. Phys. 148 241711

    [11]

    Behler J, Parrinello M 2007 Phys. Rev. Lett. 98 146401

    [12]

    Chiriki S, Jindal S, Bulusu S S 2017 J. Chem. Phys. 146 084314

    [13]

    Zhao R, Wang S, Kong Z, Xu Y, Fu K, Peng P, Wu C 2023 Mater. Des. 231 112012

    [14]

    A. Young T, Johnston-Wood T, L. Deringer V, Duarte F 2021 Chem. Sci. 12 10944

    [15]

    Smith J S, Nebgen B, Lubbers N, Isayev O, Roitberg A E 2018 J. Chem. Phys. 148 241733

    [16]

    van der Oord C, Sachs M, Kovács D P, Ortner C, Csányi G 2023 npj Comput. Mater. 9 1

    [17]

    Kulichenko M, Barros K, Lubbers N, Li Y W, Messerly R, Tretiak S, Smith J S, Nebgen B 2023 Nat. Comput. Sci. 3 230

    [18]

    Deringer V L, Pickard C J, Csányi G 2018 Phys. Rev. Lett. 120 156001

    [19]

    Hao M, Guan P 2023 Chin. Phys. B 32 098401

    [20]

    Li F, Zhang Z, Liu H, Zhu W, Wang T, Park M, Zhang J, Bönninghoff N, Feng X, Zhang H, Luan J, Wang J, Liu X, Chang T, Chu J P, Lu Y, Liu Y, Guan P, Yang Y 2024 Nat. Mater. 23 52

    [21]

    Zhang Z, Zhang S, Wang Q, Lu A, Chen Z, Yang Z, Luan J, Su R, Guan P, Yang Y 2024 Proc. Natl. Acad. Sci. U.S.A. 121 e2400200121

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Adak S, Nakotte H, de Châtel P F, Kiefer B 2011 Phys. B: Condens. Matter. 406 3342

    [25]

    Bartók A P, Kondor R, Csányi G 2013 Phys. Rev. B 87 184115

    [26]

    Jindal S, Chiriki S, Bulusu S S 2017 J. Chem. Phys. 146 204301

    [27]

    Gasteiger J, Groß J, Günnemann S 2022 arXiv:2003.03123 [cs.LG]

    [28]

    Artrith N, Urban A, Ceder G 2017 Phys. Rev. B 96 014112

    [29]

    Loshchilov I, Hutter F 2019 arXiv:1711.05101 [cs.LG]

    [30]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [31]

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in ’t Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171

    [32]

    Nosé S 1984 J. Chem. Phys. 81 511

    [33]

    Parrinello M, Rahman A 1980 Phys. Rev. Lett. 45 1196

    [34]

    Zhang L, Han J, Wang H, Car R, E W 2018 Phys. Rev. Lett. 120 143001

    [35]

    Wen T, Wang C Z, Kramer M J, Sun Y, Ye B, Wang H, Liu X, Zhang C, Zhang F, Ho K M, Wang N 2019 Phys. Rev. B 100 174101

    [36]

    Pickard C J, Needs R J 2011 J. Phys.: Condens. Matter 23 053201

    [37]

    Imbalzano G, Anelli A, Giofré D, Klees S, Behler J, Ceriotti M 2018 J. Chem. Phys. 148 241730

    [38]

    Mahoney M W, Drineas P 2009 Proc. Natl. Acad. Sci. U.S.A. 106 697

    [39]

    Pan X L, Wang H, Zhang L L, Wang Y F, Chen X R, Geng H Y, Chen Y 2023 J. Nucl. Mater. 579 154394

    [40]

    Barrett C S, Mueller M H, Hitterman R L 1963 Phys. Rev. 129 625

    [41]

    Wilson A S, Rundle R E 1949 Acta Cryst.2 126

    [42]

    Roberge R 1975 J. Less-Common Met. 40 161

    [43]

    Koike J, Kassner M E, Tate R E, Rosen R S 1998 J. Phase Equilib.19 253

    [44]

    Shimizu F, Ogata S, Li J 2007 Mater. Trans. 48 2923

  • [1] 胡庭赫, 李直昊, 张千帆. 元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20231735
    [2] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理. 物理学报, doi: 10.7498/aps.73.20240066
    [3] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, doi: 10.7498/aps.71.20220733
    [4] 周明锦, 侯氢, 潘荣剑, 吴璐, 付宝勤. 锆铌合金的特殊准随机结构模型的分子动力学研究. 物理学报, doi: 10.7498/aps.70.20201407
    [5] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20202239
    [6] 韩同伟, 李仁, 操淑敏, 张小燕. 官能化对五边形石墨烯力学性能的影响及机理研究. 物理学报, doi: 10.7498/aps.70.20210764
    [7] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20200836
    [8] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, doi: 10.7498/aps.68.20182125
    [9] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, doi: 10.7498/aps.67.20172193
    [10] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, doi: 10.7498/aps.65.176201
    [11] 潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔. 基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响. 物理学报, doi: 10.7498/aps.65.156201
    [12] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, doi: 10.7498/aps.65.077101
    [13] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, doi: 10.7498/aps.63.136801
    [14] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.063103
    [15] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, doi: 10.7498/aps.62.076202
    [16] 周耐根, 胡秋发, 许文祥, 李克, 周浪. 硅熔化特性的分子动力学模拟–-不同势函数的对比研究. 物理学报, doi: 10.7498/aps.62.146401
    [17] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, doi: 10.7498/aps.56.6118
    [18] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, doi: 10.7498/aps.54.4846
    [19] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, doi: 10.7498/aps.54.1665
    [20] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, doi: 10.7498/aps.54.4395
计量
  • 文章访问数:  88
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-13

/

返回文章
返回