搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟

胡庭赫 李直昊 张千帆

引用本文:
Citation:

元素掺杂对储氢容器用高强钢性能影响的第一性原理和分子动力学模拟

胡庭赫, 李直昊, 张千帆

First principles and molecular dynamics simulations of effect of dopants on properties of high strength steel for hydrogen storage vessels

Hu Ting-He, Li Zhi-Hao, Zhang Qian-Fan
PDF
HTML
导出引用
  • 高压气态储氢是当前氢能储运的重要方式, 而高强钢材料则是储氢容器主要采用的材料之一. 然而, 其内部杂质元素和固有缺陷常导致其力学性能下降, 从而降低了容器的承压能力和存储寿命. 目前元素掺杂对于高强度钢力学性能的影响机制尚不完全明确, 基于此, 本文应用第一性原理计算模拟方法研究了Fe-M及Fe-C-M (M = Cr, Mn, Mo, As, Sb, Bi, Sn, Pb)体系中元素掺杂对其机械性能的影响. 结果表明, Mn掺杂使得高强钢的弹性模量、体模量和剪切模量等增强, 而其余元素的引入均使得高强钢的3种模量减弱, 其中非过渡金属元素对3种模量的影响大于过渡金属元素. 电子结构分析表明, 过渡金属元素与Fe晶格有着更好的相容性. 分子动力学模拟结果进一步显示H原子的注入显著地破坏了Fe多晶掺杂C, Cr, Mn元素体系的晶格有序性, 而Cr元素的掺入则可以显著提升体系的位错密度. 综上, 本文探究了掺杂元素对单晶和多晶Fe力学性能的影响, 对Fe基材料掺杂及缺陷对强度影响的机理研究具有较强的指导意义.
    High-pressure gaseous hydrogen storage is an important way of hydrogen energy storage and transport at present, while high-strength steel material is one of the main materials used for hydrogen storage vessels. However, their internal doping elements and inherent defects often lead their mechanical properties to decrease, thus reducing the pressure-bearing capability and storage life of the vessel. At present, the mechanism of doping elements influencing the mechanical properties of high-strength steels is still unclear. In this work, a first-principles approach is used to study the influence of elemental doping (Cr, Mn, Mo, As, Sb, Bi, Sn, Pb) on the mechanical properties of Fe single crystals and Fe-C systems. The results show that among the above elements, Mn doping can increase the elastic modulus, bulk modulus, and shear modulus compared with those of pure Fe, while the doping by remaining elements will reduce the three moduli above, with the non-transition metal elements having a greater effect on the three moduli than the transition metal elements. Electronic structure analysis shows that the transition metal elements have better compatibility with the Fe lattice. Molecular dynamics results further show that the injection of H atoms significantly disrupts the lattice ordering of the Fe polycrystalline doped by C, Cr, and Mn elements, while the doping of Cr elements can significantly enhance the dislocation density of the system. The effects of doping elements on the mechanical properties of single-crystal and polycrystalline Fe, which are studied in this work, are of great significance in guiding the mechanistic study of the effects of doping and defects on the strength of Fe-based materials.
      通信作者: 张千帆, qianfan@buaa.edu.cn
    • 基金项目: 河北省科技重大专项(批准号: 22284402Z)和北京市自然科学基金(批准号: 2192029)资助的课题.
      Corresponding author: Zhang Qian-Fan, qianfan@buaa.edu.cn
    • Funds: Project supported by the Science and Technology Major Project of Hebei Province, China (Grant No. 22284402Z) and the Natural Science Foundation of Beijing, China (Grant No. 2192029).
    [1]

    Zhou X Y, Yang X S, Zhu J H, Xing F 2020 Int. J. Hydrog. Energy 45 3294Google Scholar

    [2]

    Xing X, Chen W X, Zhang H 2017 Int. J. Hydrog. Energy 42 4571Google Scholar

    [3]

    Zafra A, Peral L B, Belzunce J, Rodríguez C 2018 Int. J. Hydrog. Energy 43 9068Google Scholar

    [4]

    Bechtle S, Kumar M, Somerday B P, Launey M E, Ritchie R O 2009 Acta Mater. 57 4148Google Scholar

    [5]

    Ye T Z, Wang Z T, Wu Y W, Zhang J, Chen P, Wang M J, Tian W X, Su G H, Qiu S Z 2023 J. Mater. Res. 38 828Google Scholar

    [6]

    Chen K, Xu Y W, Song S H 2019 Results Phys. 13 102208Google Scholar

    [7]

    周华生, 曹燕, 章小峰, 吴迪, 赵鑫磊, 邢梅, 林方敏, 江雅 2024 材料导报 38 22110194

    Zhou H S, Cao Y, Zhang X F, Wu D, Zhao X L, Xing M, Lin F M, Jiang Y 2024 Mater. Rep. 38 22110194

    [8]

    Chatterjee S, Ghosh S, Saha-Dasgupta T 2021 Minerals 11 258Google Scholar

    [9]

    Xiong X L, Ma H X, Zhang L N, Song K K, Yan Y, Qian P, Su Y J 2023 Comput. Mater. Sci. 216 111854Google Scholar

    [10]

    文平, 李春福, 赵毅, 张凤春, 童丽华 2014 物理学报 63 197101Google Scholar

    Wen P, Li C F, Zhao Y, Zhang F C, Tong L H 2014 Acta Phys. Sin. 63 197101Google Scholar

    [11]

    王明军, 李春福, 文平, 张凤春, 王垚, 刘恩佐 2016 物理学报 65 037101Google Scholar

    Wang M J, Li C F, Wen P, Zhang F C, Wang Y, Liu E Z 2016 Acta Phys. Sin. 65 037101Google Scholar

    [12]

    Zhou X Y, Zhu J H, Wu H H 2021 Int. J. Hydrog. Energy 46 5842Google Scholar

    [13]

    Hafner J, Kresse G 1997 Properties of Complex Inorganic Solids (Boston: Springer) pp69–82

    [14]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [15]

    Thompson A P, Aktulga H M, Berger R, et al. 2022 Comput. Phys. Commun. 271 108171Google Scholar

    [16]

    Liu Z R, Yao B N, Zhang R F 2022 Comput. Mater. Sci. 210 111027Google Scholar

    [17]

    Starikov S, Smirnova D, Pradhan T, Gordeev I, Drautz R, Mrovec M 2022 Phys. Rev. Mater. 6 043604Google Scholar

    [18]

    Hepburn D J, Ackland G J 2008 Phys. Rev. B 78 165115Google Scholar

    [19]

    Kim Y M, Shin Y H, Lee B J 2009 Acta Mater. 57 474Google Scholar

    [20]

    Evans D J, Holian B L 1985 J. Chem. Phys. 83 4069Google Scholar

    [21]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [22]

    Zhao Y J, Zunger A 2004 Phys. Rev. B 69 075208Google Scholar

    [23]

    刘柏年, 马颖, 周益春 2010 物理学报 59 3377Google Scholar

    Liu B N, Ma Y, Zhou Y C 2010 Acta Phys. Sin. 59 3377Google Scholar

    [24]

    Lee H S, Mizoguchi T, Yamamoto T, Kang S J L, Ikuhara Y 2007 Acta Mater. 55 6535Google Scholar

  • 图 1  (a) 5%浓度的替换掺杂的BCC单晶Fe超胞模型; (b)边长为150 Å的多晶Fe模型, 不同颜色用来区分晶粒内部和晶界处的原子

    Fig. 1.  (a) Fe supercell of BCC single crystal, 5% substitutional solution; (b) a polycrystalline Fe model with a side length of 150 Å, where different colours indicate atoms at the boundary and inside grains.

    图 2  (a)—(d) Fe-M体系、(e)—(h) Fe-C-M体系不同M种类及浓度下的弹性模量、体模量、剪切模量和泊松比, 虚线表示纯铁体系对应的数值

    Fig. 2.  Young’s moduli, bulk moduli, shear moduli and Poisson’s ratio for (a)–(d) Fe-M systems and (e)–(h) Fe-C-M systems with different M species and concentrations. Dotted line represents moduli and Poisson’s ratio of pure Fe systems.

    图 3  (a)—(d) Fe-Mn, Fe-Mo, Fe-As以及Fe-Pb体系的分波态密度; (e)—(h) Fe-C-Mn, Fe-C-Mo, Fe-C-As以及Fe-C-Pb体系的分波态密度

    Fig. 3.  PDOS of (a) Fe-Mn, (b) Fe-Mo, (c) Fe-As, (d) Fe-Pb, (e) Fe-C-Mn, (f) Fe-C-Mo, (g) Fe-C-As, (h) Fe-C-Pb systems.

    图 4  (a)—(d) 不同H浓度下Fe-C-H体系的分波态密度

    Fig. 4.  (a)–(d) PDOS of Fe-C-H systems under different H concentrations.

    图 5  (a) Fe-H, (b) Fe-C, (c) Fe-Cr以及(d) Fe-Mn多晶体系的杨氏模量随掺杂元素种类及含量的变化

    Fig. 5.  Young’s moduli of (a) Fe-H, (b) Fe-C, (c) Fe-Cr, (d) Fe-Mn polycrystalline systems with various doping element content.

    图 6  (a) Fe-H, (b) Fe-C, (c) Fe-Cr以及(d) Fe-Mn二元体系和(e) Fe-C-Cr, (f) Fe-C-Mn三元体系在不同掺杂浓度下的拉伸应力-应变曲线

    Fig. 6.  Tensile stress-strain curves at different doping concentrations: (a) Fe-H, (b) Fe-C, (c) Fe-Cr and (d) Fe-Mn binary system; (e) Fe-C-Cr, (f) Fe-C-Mn ternary system.

    图 7  (a)—(f) H, C, Cr, Mn元素对多晶体Fe最大应力和屈服强度的影响

    Fig. 7.  Influences of (a)–(f) H, C, Cr and Mn on maximum strength and yield strength of Fe polycrystal.

    图 8  (a)—(f) Fe-H体系、Fe-C体系、Fe-C-H体系、Fe-Cr体系、Fe-Cr-H体系及Fe-Mn体系在拉伸初始条件下的晶格取向模型; (g)—(l) Fe-H体系、Fe-C体系、Fe-C-H体系、Fe-Cr体系、Fe-Cr-H体系及Fe-Mn体系在拉伸过程4 ps到达最大应变时的晶体取向模型, 不同颜色代表晶体的不同取向

    Fig. 8.  (a)–(f) Lattice orientation models of Fe-H, Fe-C, Fe-C-H, Fe-Cr, Fe-Cr-H and Fe-Mn systems under fully relaxed conditions; (g)–(l) crystal orientation models of Fe-H, Fe-C, Fe-C-H, Fe-Cr, Fe-Cr-H and Fe-Mn systems at maximum strain during stretching. Different colours indicate different orientations of crystals.

    图 9  (a)—(f) Fe-H体系、Fe-C体系、Fe-C-H体系、Fe-Cr体系、Fe-Cr-H体系及Fe-Mn体系在拉伸初始条件下的位错线分布对比图

    Fig. 9.  (a)–(f) Dislocation configurations of Fe-H, Fe-C, Fe-C-H, Fe-Cr, Fe-Cr-H and Fe-Mn systems after relaxation.

    表 1  Fe-M体系的晶格参数a, bc, 以及Fe-M体系和Fe-C-M掺杂体系的形成能$ \Delta {H_{{\text{D,q}}}} $和$ \Delta {H_{{\text{C,D,q}}}} $

    Table 1.  Lattice parameters of Fe-M systems, and formation energy of Fe-M and Fe-C-M systems.

    掺杂/% a b c ΔHD,q
    /eV
    ΔHC,D,q
    /eV
    Cr 1 2.831 2.831 2.831 –0.168 0.565
    3 2.834 2.835 2.835 –0.456 0.690
    5 2.838 2.837 2.838 –0.721 0.863
    Mo 1 2.834 2.834 2.834 0.001 0.738
    3 2.841 2.842 2.841 0.009 1.174
    5 2.849 2.848 2.850 –0.003 1.603
    Mn 1 2.830 2.830 2.830 0.232 0.964
    3 2.829 2.830 2.829 0.756 1.307
    5 2.829 2.829 2.828 0.993 1.711
    As 1 2.832 2.832 2.832 –0.387 0.335
    3 2.837 2.837 2.836 –1.173 0.023
    5 2.842 2.843 2.842 –1.983 –0.269
    Sb 1 2.836 2.836 2.836 0.433 1.169
    3 2.851 2.850 2.849 1.233 3.165
    5 2.864 2.868 2.863 1.807 4.969
    Bi 1 2.839 2.839 2.839 2.125 2.864
    3 2.862 2.859 2.858 6.156 7.641
    5 2.878 2.885 2.878 9.758 11.807
    Sn 1 2.836 2.836 2.836 0.613 1.357
    3 2.851 2.850 2.850 1.663 3.181
    5 2.864 2.868 2.864 2.452 4.797
    Pb 1 2.839 2.839 2.839 2.233 2.976
    3 2.860 2.857 2.858 6.412 7.613
    5 2.875 2.880 2.877 10.206 11.695
    下载: 导出CSV
  • [1]

    Zhou X Y, Yang X S, Zhu J H, Xing F 2020 Int. J. Hydrog. Energy 45 3294Google Scholar

    [2]

    Xing X, Chen W X, Zhang H 2017 Int. J. Hydrog. Energy 42 4571Google Scholar

    [3]

    Zafra A, Peral L B, Belzunce J, Rodríguez C 2018 Int. J. Hydrog. Energy 43 9068Google Scholar

    [4]

    Bechtle S, Kumar M, Somerday B P, Launey M E, Ritchie R O 2009 Acta Mater. 57 4148Google Scholar

    [5]

    Ye T Z, Wang Z T, Wu Y W, Zhang J, Chen P, Wang M J, Tian W X, Su G H, Qiu S Z 2023 J. Mater. Res. 38 828Google Scholar

    [6]

    Chen K, Xu Y W, Song S H 2019 Results Phys. 13 102208Google Scholar

    [7]

    周华生, 曹燕, 章小峰, 吴迪, 赵鑫磊, 邢梅, 林方敏, 江雅 2024 材料导报 38 22110194

    Zhou H S, Cao Y, Zhang X F, Wu D, Zhao X L, Xing M, Lin F M, Jiang Y 2024 Mater. Rep. 38 22110194

    [8]

    Chatterjee S, Ghosh S, Saha-Dasgupta T 2021 Minerals 11 258Google Scholar

    [9]

    Xiong X L, Ma H X, Zhang L N, Song K K, Yan Y, Qian P, Su Y J 2023 Comput. Mater. Sci. 216 111854Google Scholar

    [10]

    文平, 李春福, 赵毅, 张凤春, 童丽华 2014 物理学报 63 197101Google Scholar

    Wen P, Li C F, Zhao Y, Zhang F C, Tong L H 2014 Acta Phys. Sin. 63 197101Google Scholar

    [11]

    王明军, 李春福, 文平, 张凤春, 王垚, 刘恩佐 2016 物理学报 65 037101Google Scholar

    Wang M J, Li C F, Wen P, Zhang F C, Wang Y, Liu E Z 2016 Acta Phys. Sin. 65 037101Google Scholar

    [12]

    Zhou X Y, Zhu J H, Wu H H 2021 Int. J. Hydrog. Energy 46 5842Google Scholar

    [13]

    Hafner J, Kresse G 1997 Properties of Complex Inorganic Solids (Boston: Springer) pp69–82

    [14]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [15]

    Thompson A P, Aktulga H M, Berger R, et al. 2022 Comput. Phys. Commun. 271 108171Google Scholar

    [16]

    Liu Z R, Yao B N, Zhang R F 2022 Comput. Mater. Sci. 210 111027Google Scholar

    [17]

    Starikov S, Smirnova D, Pradhan T, Gordeev I, Drautz R, Mrovec M 2022 Phys. Rev. Mater. 6 043604Google Scholar

    [18]

    Hepburn D J, Ackland G J 2008 Phys. Rev. B 78 165115Google Scholar

    [19]

    Kim Y M, Shin Y H, Lee B J 2009 Acta Mater. 57 474Google Scholar

    [20]

    Evans D J, Holian B L 1985 J. Chem. Phys. 83 4069Google Scholar

    [21]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [22]

    Zhao Y J, Zunger A 2004 Phys. Rev. B 69 075208Google Scholar

    [23]

    刘柏年, 马颖, 周益春 2010 物理学报 59 3377Google Scholar

    Liu B N, Ma Y, Zhou Y C 2010 Acta Phys. Sin. 59 3377Google Scholar

    [24]

    Lee H S, Mizoguchi T, Yamamoto T, Kang S J L, Ikuhara Y 2007 Acta Mater. 55 6535Google Scholar

  • [1] 苏锐, 李庆安, 管鹏飞. 铀铌合金神经网络势函数构建及其低温时效性质的分子动力学研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241084
    [2] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理. 物理学报, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [3] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [4] 韩同伟, 李仁, 操淑敏, 张小燕. 官能化对五边形石墨烯力学性能的影响及机理研究. 物理学报, 2021, 70(22): 226201. doi: 10.7498/aps.70.20210764
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 付正鸿, 李婷, 单美乐, 郭糠, 苟国庆. H对Mg2Si力学性能影响的第一性原理研究. 物理学报, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [7] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [8] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [9] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [10] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [11] 潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔. 基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响. 物理学报, 2016, 65(15): 156201. doi: 10.7498/aps.65.156201
    [12] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [13] 樊涛, 曾庆丰, 于树印. Hf-N体系的晶体结构预测和性质的第一性原理研究. 物理学报, 2016, 65(11): 118102. doi: 10.7498/aps.65.118102
    [14] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [15] 曾小波, 朱晓玲, 李德华, 陈中钧, 艾应伟. IrB和IrB2力学性质的第一性原理计算. 物理学报, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [16] 代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛. 金属氢化物力学性能的第一性原理研究. 物理学报, 2012, 61(10): 108801. doi: 10.7498/aps.61.108801
    [17] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [18] 周恒为, 王丽娜, 郭秀珍, 吴娜娜, 张丽, 张晋鲁, 黄以能. 邻苯二甲酸二甲酯晶体中裂纹愈合效应的力学谱研究. 物理学报, 2010, 59(3): 2120-2125. doi: 10.7498/aps.59.2120
    [19] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [20] 王立群, 王明霞, 李德军, 杨 瑾, 余大书, 宿 杰. N2分压对ZrN/WN纳米多层膜缺陷性质与力学性能的影响. 物理学报, 2007, 56(6): 3435-3439. doi: 10.7498/aps.56.3435
计量
  • 文章访问数:  2378
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2024-01-06
  • 上网日期:  2024-01-16
  • 刊出日期:  2024-03-20

/

返回文章
返回