搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卤素及含氧元素掺杂对α-2-石墨炔纳米带的NDR与自旋过滤效应的调控研究

李晓波 刘帅奇 黄演 马玉 丁文策

引用本文:
Citation:

卤素及含氧元素掺杂对α-2-石墨炔纳米带的NDR与自旋过滤效应的调控研究

李晓波, 刘帅奇, 黄演, 马玉, 丁文策

Regulation on the negative differential resistance and spin-splitting effects with halogen and oxygen-doping for α-2-graphyne nanoribbons

Li Xiao-Bo, Liu Shuai-Qi, Huang Yan, Ma Yu, Ding Wen-C
PDF
导出引用
  • 随着集成电路制备对尺寸要求的逐步提高,电子器件的微型化研究受到越来越多科学家的青睐。本研究通过采用密度泛函理论结合非平衡格林函数的方法,系统研究了卤素等元素边缘修饰对α-2-石墨炔的电子能带结构及其器件的电子输运特性的调控作用。从能带结构研究发现,在反铁磁组态下多种元素掺杂都使得α-2-石墨炔表现出独特的半导体属性。特别是,采用氧元素边缘修饰的α-2-石墨炔周期性结构在费米能级附近展现出较为复杂的结构特性。此外,电子器件研究表明氟(F)、氯(Cl)、氧(O)、氢氧根(OH)元素掺杂调控下器件展示出明显的负微分电阻效应(NDR)和自旋过滤效应。有趣的是,研究发现外加电压为-0.4V时自旋平行配置下器件的自旋过滤效率高达84%。本文通过进一步分析其传输路径、透射谱与局域态密度来阐释NDR效应与自旋过滤效应的产生机理,为理解α-2-石墨炔在电子输运中的独特行为提供充分的理论依据。该研究将在新型逻辑器件、集成电路、微纳电子机器等热点领域的研究中发挥明显的应用价值。
    With the continuous improvement on the size requirements of integrated circuit fabrication, the research on the miniaturization of electronic device is favored by more and more scientists. This paper systematically investigated the edge modifications on the electronic band structure of α-2-graphyne and electronic transport characteristics of its devices by employing the density functional theory combined with non-equilibrium Green's functions. From the research results of the band structures with halogens or oxygenated group doping, when the various elements doping within the antiferromagnetic configuration have been applied in α-2-graphyne, the materials exhibit unique semiconductor properties. In particular, the periodic structure of α-2-graphyne with the O-doping exhibits relatively complex band structures near the Fermi level. We can find that the electronic devices with F, Cl, O, OH doping show obvious negative differential resistance (NDR) and spin filtering effects. Among them, the NDR effect of the device with O doping (M4) shows particularly significant feature, and its peak-to-valley ratio within the antiparallel case is as high as 136. However, the peak-to-valley ratio reaches 128 within the antiferromagnetism configuration. In addition, we further dissect the intrinsic physical mechanism of the NDR effect by calculating the transmission spectra and local density of states within the parallel and antiparallel cases. At the same time, the spin filtering efficiency of the device reaches high as 84% at an applied voltage of -0.4V within the parallel case and 79% at -1.6V within antiparallel case. By analyzing the electron transport paths of the M4, we can clearly understand the intrinsic mechanism of the spin-filtering properties for the devices based on the α-2-graphyne nanotibbons. This research will have obvious application value in the research of hot areas such as novel logic devices, integrated circuits and micro/ nano-electronic machines.
  • [1]

    Ivanovskii A L 2013 Prog. Solid. State. Chem. 41 1-19

    [2]

    Djurišić A B, Li E H 1999 J. Appl. Phys. 85 7404-7410

    [3]

    Wudl F 2002 J. Mater. Chem. 12 1959-1963

    [4]

    Ebbesen T W 1996 Phys. Today. 49 26-32

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater.6 183-191

    [6]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

    [7]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687-6699

    [8]

    Popov V N, Lambin P 2013Phys. Rev. B 88 075427

    [9]

    Ni Y, Wang X, Tao W, Zhu S C, Yao K L 2016 Sci. Rep. 6 25914

    [10]

    Zhang X J, Peng D D, Xie X L, Li X B, Dong Y L, Long M Q 2021 Eur. Phys. J. B. 94 86

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science. 306 666-669

    [12]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid. State. Commun. 146 351-355

    [13]

    Alexander B A, Suchismita G, Wen Z B, Irene C, Desalegne T, Feng M, Liu C N 2008 Nano lett. 8 902-907

    [14]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256-3258

    [15]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C. 116 5951-5956

    [16]

    Majidi R 2018 J. Electron. Mater. 47 2890-2896

    [17]

    Jafari S N, Hakimi Y, Rouhi S 2020 Phys. E. 119 114022

    [18]

    Zeng M G, Shen L, Cai Y Q, Sha Z D, Feng Y P 2010 Appl. Phys. Lett. 96 042104

    [19]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422

    [20]

    Dong X S, Chen T, Liu G G, Xie L Z, Zhou G H, Long M Q 2022 ACS Sens. 7 3450-3460

    [21]

    Li Y, Li X B, Zhang S D, Zhang X J, Long M Q 2022 J. Magn. Magn. Mater. 546 168842

    [22]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550-1552

    [23]

    Lang N D, Avouris P 1998 Phys. Rev. Lett. 81 3515

    [24]

    Ding W C, Zhang J, Li X B, Chen T, Zhou G H 2022 Phys. E 142 115316

    [25]

    Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X, Yang J L 2012 J. Chem. Phys. 136064707

    [26]

    Evlashin S A, Tarkhov M A, Chernodubov D A,Inyushkin A V, Pilevsky A A, Dyakonov P V, Pavlov A A, Suetin N V, Akhatov I S, Perebeinos V 2021 Phys. Rev. Appl. 15 054057

    [27]

    Peng D D, Zhang X J, Li X B, Wu D, Long M Q 2018 J. Appl. Phys. 124 184303

    [28]

    Hu J, Ruan X, Chen Y P 2009 Nano. lett. 9 2730-2735

    [29]

    Zeng J, Chen K Q 2013J. Mater. Chem. C. 1 4014-4019

    [30]

    Pan J B, Zhang Z H, Ding K H, Deng X Q, Guo C 2011 Appl. Phys. Lett. 98 092102

    [31]

    Li J, Zhang Z H, Qiu M, Yuan C, Deng X Q, Fan Z Q, Tang G P, Liang B 2014 Carbon 80 575-582

    [32]

    Meyer J C, Girit C O, Crommie M F, Zettl A 2008 Nature 454 319-322

    [33]

    Caridad J M, Calogero G, Pedrinazzi P, Santos J E, Impellizzeri A, Gunst T, Booth T J, Sordan R, Bøggild P, Brandbyge M 2018 Nano. Lett. 18 4675-4683

    [34]

    Saffarzadeh A, Farghadan R 2011 Appl. Phys. Lett. 98 023106

    [35]

    Mohammadi A, Zaminpayma E 2018 Org. Electron. 61 334-342

    [36]

    Zhang L W, Yang Y Q, Chen J, Zheng X H, Zhang L, Xiao L T, Jia S T 2020 Phys. Chem. Chem. Phys. 22 18548-18555

    [37]

    Bhattacharya B, Sarkar U 2016 J. Phys. Chem. C. 120 26793-26806

    [38]

    Li X B, Zhou J Y, Yu M, Li Y, Zhou K Z, Wang X J, Zhang X J, Long M Q 2023 J. Magn. Magn. Mater.587 171367

    [39]

    Chen X, Xu W, Song B, He P 2020 J Phys-Condens. Mat. 32 215501

    [40]

    Cao L M, Li X B, Li Y, Zhou G H 2020 J. Mater. Chem. C 8 9313-9321

    [41]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [42]

    Li X B, Cao L M, Long M Q, Liu Z R, Zhou G H 2018 Carbon 131 160-167

    [43]

    Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811

    [44]

    Ren H, Li Q X, Luo Y, Yang J L 2009 Appl. Phys. Lett. 94 173110

    [45]

    Li X B, Qi F, Zhao R D, Qiu Z J, Li Y, Long M Q, Zhou G H 2022 J. Mater. Chem. C 10 5292

    [46]

    Peng S P, Huang X D, Liu Q, Ren P, Wu D, Fan Z Q 2023 Acta Phys. Sin. 72 058501 (in Chinese) [彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强 2023 物理学报 72 058501]

    [47]

    Ding W C, Zhang J, Li X B, Zhou G H 2024 Appl. Surf. Sci.

    [48]

    Yu G L, Ding W C, Xiao X B, Li X B, Zhou G H 2020 Nanoscale. Res. Lett. 15 185

    [49]

    664 160043

    [50]

    Zhou Y H, Zeng J, Chen K Q 2014 Carbon 76 175-182

  • [1] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究. 物理学报, doi: 10.7498/aps.73.20231432
    [2] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 边修饰GeS2纳米带的电子特性及调控效应. 物理学报, doi: 10.7498/aps.73.20231670
    [3] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20230093
    [4] 杨维, 韩江朝, 曹元, 林晓阳, 赵巍胜. Fe3GeTe2/h-BN/石墨烯二维异质结器件中的高效率自旋注入. 物理学报, doi: 10.7498/aps.70.20202136
    [5] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应. 物理学报, doi: 10.7498/aps.68.20190817
    [6] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间. 物理学报, doi: 10.7498/aps.65.227302
    [7] 朱朕, 李春先, 张振华. 功能化扶手椅型石墨烯纳米带异质结的磁器件特性. 物理学报, doi: 10.7498/aps.65.118501
    [8] 柴丰涛, 岳继礼, 邱吴劼, 郭海波, 陈丽江, 施思齐. 正交相Fe2(MoO4)3的制备与表征及其负膨胀行为的第一性原理研究. 物理学报, doi: 10.7498/aps.65.056501
    [9] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, doi: 10.7498/aps.65.068503
    [10] 李永辉, 闫强, 周丽萍, 韩琴. 金纳米线接触构型相关的双重负微分电阻与整流效应. 物理学报, doi: 10.7498/aps.64.057301
    [11] 文平, 李春福, 赵毅, 张凤春, 童丽华. Cr,Mo,Ni在α-Fe(C)中占位、键合性质及合金化效应的第一性原理研究. 物理学报, doi: 10.7498/aps.63.197101
    [12] 杨理践, 刘斌, 高松巍, 陈立佳. 金属磁记忆效应的第一性原理计算与实验研究. 物理学报, doi: 10.7498/aps.62.086201
    [13] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.063601
    [14] 唐冬华, 薛林, 孙立忠, 钟建新. B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究. 物理学报, doi: 10.7498/aps.61.027102
    [15] 范志强, 谢芳. 硼氮原子取代掺杂对分子器件负微分电阻效应的影响. 物理学报, doi: 10.7498/aps.61.077303
    [16] 赵宇宏, 黄志伟, 李爱红, 穆彦青, 杨伟明, 侯华, 韩培德, 张素英. Nb在Ni3Al中取代行为及合金化效应的第一性原理研究. 物理学报, doi: 10.7498/aps.60.047103
    [17] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, doi: 10.7498/aps.59.4156
    [18] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究. 物理学报, doi: 10.7498/aps.59.6487
    [19] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, doi: 10.7498/aps.59.8037
    [20] 党宏丽, 王崇愚, 于 涛. γ-TiAl中Nb和Mo合金化效应的第一性原理研究. 物理学报, doi: 10.7498/aps.56.2838
计量
  • 文章访问数:  106
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-07

/

返回文章
返回