-
随着集成电路制备对尺寸要求的逐步提高,电子器件的微型化研究受到越来越多科学家的青睐。本研究通过采用密度泛函理论结合非平衡格林函数的方法,系统研究了卤素等元素边缘修饰对α-2-石墨炔的电子能带结构及其器件的电子输运特性的调控作用。从能带结构研究发现,在反铁磁组态下多种元素掺杂都使得α-2-石墨炔表现出独特的半导体属性。特别是,采用氧元素边缘修饰的α-2-石墨炔周期性结构在费米能级附近展现出较为复杂的结构特性。此外,电子器件研究表明氟(F)、氯(Cl)、氧(O)、氢氧根(OH)元素掺杂调控下器件展示出明显的负微分电阻效应(NDR)和自旋过滤效应。有趣的是,研究发现外加电压为-0.4V时自旋平行配置下器件的自旋过滤效率高达84%。本文通过进一步分析其传输路径、透射谱与局域态密度来阐释NDR效应与自旋过滤效应的产生机理,为理解α-2-石墨炔在电子输运中的独特行为提供充分的理论依据。该研究将在新型逻辑器件、集成电路、微纳电子机器等热点领域的研究中发挥明显的应用价值。With the continuous improvement on the size requirements of integrated circuit fabrication, the research on the miniaturization of electronic device is favored by more and more scientists. This paper systematically investigated the edge modifications on the electronic band structure of α-2-graphyne and electronic transport characteristics of its devices by employing the density functional theory combined with non-equilibrium Green's functions. From the research results of the band structures with halogens or oxygenated group doping, when the various elements doping within the antiferromagnetic configuration have been applied in α-2-graphyne, the materials exhibit unique semiconductor properties. In particular, the periodic structure of α-2-graphyne with the O-doping exhibits relatively complex band structures near the Fermi level. We can find that the electronic devices with F, Cl, O, OH doping show obvious negative differential resistance (NDR) and spin filtering effects. Among them, the NDR effect of the device with O doping (M4) shows particularly significant feature, and its peak-to-valley ratio within the antiparallel case is as high as 136. However, the peak-to-valley ratio reaches 128 within the antiferromagnetism configuration. In addition, we further dissect the intrinsic physical mechanism of the NDR effect by calculating the transmission spectra and local density of states within the parallel and antiparallel cases. At the same time, the spin filtering efficiency of the device reaches high as 84% at an applied voltage of -0.4V within the parallel case and 79% at -1.6V within antiparallel case. By analyzing the electron transport paths of the M4, we can clearly understand the intrinsic mechanism of the spin-filtering properties for the devices based on the α-2-graphyne nanotibbons. This research will have obvious application value in the research of hot areas such as novel logic devices, integrated circuits and micro/ nano-electronic machines.
-
Keywords:
- α-2-graphyne /
- first principles /
- edge modification /
- negative differential resistance effect /
- spin filtering effect
-
[1] Ivanovskii A L 2013 Prog. Solid. State. Chem. 41 1-19
[2] Djurišić A B, Li E H 1999 J. Appl. Phys. 85 7404-7410
[3] Wudl F 2002 J. Mater. Chem. 12 1959-1963
[4] Ebbesen T W 1996 Phys. Today. 49 26-32
[5] Geim A K, Novoselov K S 2007 Nat. Mater.6 183-191
[6] Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009
[7] Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687-6699
[8] Popov V N, Lambin P 2013Phys. Rev. B 88 075427
[9] Ni Y, Wang X, Tao W, Zhu S C, Yao K L 2016 Sci. Rep. 6 25914
[10] Zhang X J, Peng D D, Xie X L, Li X B, Dong Y L, Long M Q 2021 Eur. Phys. J. B. 94 86
[11] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science. 306 666-669
[12] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid. State. Commun. 146 351-355
[13] Alexander B A, Suchismita G, Wen Z B, Irene C, Desalegne T, Feng M, Liu C N 2008 Nano lett. 8 902-907
[14] Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256-3258
[15] Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C. 116 5951-5956
[16] Majidi R 2018 J. Electron. Mater. 47 2890-2896
[17] Jafari S N, Hakimi Y, Rouhi S 2020 Phys. E. 119 114022
[18] Zeng M G, Shen L, Cai Y Q, Sha Z D, Feng Y P 2010 Appl. Phys. Lett. 96 042104
[19] Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422
[20] Dong X S, Chen T, Liu G G, Xie L Z, Zhou G H, Long M Q 2022 ACS Sens. 7 3450-3460
[21] Li Y, Li X B, Zhang S D, Zhang X J, Long M Q 2022 J. Magn. Magn. Mater. 546 168842
[22] Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550-1552
[23] Lang N D, Avouris P 1998 Phys. Rev. Lett. 81 3515
[24] Ding W C, Zhang J, Li X B, Chen T, Zhou G H 2022 Phys. E 142 115316
[25] Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X, Yang J L 2012 J. Chem. Phys. 136064707
[26] Evlashin S A, Tarkhov M A, Chernodubov D A,Inyushkin A V, Pilevsky A A, Dyakonov P V, Pavlov A A, Suetin N V, Akhatov I S, Perebeinos V 2021 Phys. Rev. Appl. 15 054057
[27] Peng D D, Zhang X J, Li X B, Wu D, Long M Q 2018 J. Appl. Phys. 124 184303
[28] Hu J, Ruan X, Chen Y P 2009 Nano. lett. 9 2730-2735
[29] Zeng J, Chen K Q 2013J. Mater. Chem. C. 1 4014-4019
[30] Pan J B, Zhang Z H, Ding K H, Deng X Q, Guo C 2011 Appl. Phys. Lett. 98 092102
[31] Li J, Zhang Z H, Qiu M, Yuan C, Deng X Q, Fan Z Q, Tang G P, Liang B 2014 Carbon 80 575-582
[32] Meyer J C, Girit C O, Crommie M F, Zettl A 2008 Nature 454 319-322
[33] Caridad J M, Calogero G, Pedrinazzi P, Santos J E, Impellizzeri A, Gunst T, Booth T J, Sordan R, Bøggild P, Brandbyge M 2018 Nano. Lett. 18 4675-4683
[34] Saffarzadeh A, Farghadan R 2011 Appl. Phys. Lett. 98 023106
[35] Mohammadi A, Zaminpayma E 2018 Org. Electron. 61 334-342
[36] Zhang L W, Yang Y Q, Chen J, Zheng X H, Zhang L, Xiao L T, Jia S T 2020 Phys. Chem. Chem. Phys. 22 18548-18555
[37] Bhattacharya B, Sarkar U 2016 J. Phys. Chem. C. 120 26793-26806
[38] Li X B, Zhou J Y, Yu M, Li Y, Zhou K Z, Wang X J, Zhang X J, Long M Q 2023 J. Magn. Magn. Mater.587 171367
[39] Chen X, Xu W, Song B, He P 2020 J Phys-Condens. Mat. 32 215501
[40] Cao L M, Li X B, Li Y, Zhou G H 2020 J. Mater. Chem. C 8 9313-9321
[41] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Li X B, Cao L M, Long M Q, Liu Z R, Zhou G H 2018 Carbon 131 160-167
[43] Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811
[44] Ren H, Li Q X, Luo Y, Yang J L 2009 Appl. Phys. Lett. 94 173110
[45] Li X B, Qi F, Zhao R D, Qiu Z J, Li Y, Long M Q, Zhou G H 2022 J. Mater. Chem. C 10 5292
[46] Peng S P, Huang X D, Liu Q, Ren P, Wu D, Fan Z Q 2023 Acta Phys. Sin. 72 058501 (in Chinese) [彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强 2023 物理学报 72 058501]
[47] Ding W C, Zhang J, Li X B, Zhou G H 2024 Appl. Surf. Sci.
[48] Yu G L, Ding W C, Xiao X B, Li X B, Zhou G H 2020 Nanoscale. Res. Lett. 15 185
[49] 664 160043
[50] Zhou Y H, Zeng J, Chen K Q 2014 Carbon 76 175-182
计量
- 文章访问数: 106
- PDF下载量: 2
- 被引次数: 0