搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卤素及含氧元素掺杂对α-2-石墨炔纳米带的负微分电阻效应与自旋过滤效应的调控

李晓波 刘帅奇 黄演 马玉 丁文策

引用本文:
Citation:

卤素及含氧元素掺杂对α-2-石墨炔纳米带的负微分电阻效应与自旋过滤效应的调控

李晓波, 刘帅奇, 黄演, 马玉, 丁文策

Regulation of effect of halogen and oxygen-containing element doping on negative differential resistance and spin-filtering of α-2-graphyne nanoribbon

LI Xiaobo, LIU Shuaiqi, HUANG Yan, MA Yu, DING Wence
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 随着集成电路制备对尺寸要求的逐步提高, 电子器件的微型化研究受到越来越多科学家的青睐. 本研究通过采用密度泛函理论结合非平衡格林函数的方法, 系统地研究了卤素等元素边缘修饰对α-2-石墨炔的电子能带结构及其器件的电子输运特性的调控作用. 从能带结构研究发现, 在反铁磁组态下多种元素掺杂都使得α-2-石墨炔表现出独特的半导体属性. 特别是, 采用氧元素边缘修饰的α-2-石墨炔周期性结构在费米能级附近展现出较为复杂的结构特性. 此外, 电子器件研究表明氟(F)、氯(Cl)、氧(O)、氢氧根(OH)元素掺杂调控下器件展示出明显的负微分电阻效应(NDR)和自旋过滤效应. 有趣的是, 研究发现外加电压为–0.4 V时自旋平行配置下器件的自旋过滤效率高达84%. 本文通过进一步分析其传输路径、透射谱与局域态密度来阐释NDR效应与自旋过滤效应的产生机理, 为理解α-2-石墨炔在电子输运中的独特行为提供充分的理论依据. 该研究将在新型逻辑器件、集成电路、微纳电子机器等热点领域的研究中发挥明显的应用价值.
    With the gradual increase in size requirements for integrated circuit fabrication, the research on the miniaturization of electronic device is increasingly favored by more and more scientists. In this work, the edge modifications of the electronic band structure of α-2-graphyne and electronic transport characteristics of its devices are systematically investigated by employing the density functional theory combined with non-equilibrium Green's functions. The research results of the band structures doped with halogens or oxygenated group show that when the various elements are doped into the antiferromagnetic configuration of α-2-graphyne, the materials exhibit unique semiconductor properties. In particular, the periodic structure of α-2-graphyne with the O-doping exhibits relatively complex band structures near the Fermi level. It can be found that the electronic devices doped with F, Cl, O, OH show obvious negative differential resistance (NDR) and spin filtering effects. Among them, the NDR effect of the device with O doping (M4) shows particularly significant feature, and its peak-to-valley ratio in the antiparallel case is as high as 136. However, the peak-to-valley ratio reaches 128 in the antiferromagnetism configuration. In addition, the intrinsic physical mechanism of the NDR effect is further dissected by calculating the transmission spectra and local densities of states in the parallel case and antiparallel case. At the same time, the spin filtering efficiency of the device reaches a value as high as 84% at an applied voltage of -0.4 V in the parallel case and 79% at -1.6 V in the antiparallel case. By analyzing the electron transport paths of the M4, the intrinsic mechanism of the spin-filtering properties can be clearly understood for the devices based on the α-2-graphyne nanotibbons. This research has significant application value in the hot research t areas such as novel logic devices, integrated circuits, and micro/nano-electronic machines.
  • 图 1  (a)—(e) M1—M5为α-2-GY边缘碳原子分别被H, F, Cl, O, OH边缘钝化的结构模型图. 右侧灰色、白色、绿色、深绿色、红色圆点分别代表C, H, F, Cl, O等元素, 坐标轴指示了周期性元胞的取向

    Fig. 1.  (a)–(e) M1–M5 show the structural diagrams of α-2-GY with the edge carbon atoms passivated by H, F, Cl, O or OH atoms, respectively. The gray, white, green, olive and red circles on the right part represent the elements of C, H, F, Cl and O, respectively, and the coordinate axes indicate the orientation of the periodic cells.

    图 2  在NM下(a)—(e) M1—M5模型的能带结构图(左图)与态密度(density of states, DOS)分布图(右图). 绿色虚线代表费米能级

    Fig. 2.  Energy band structure diagrams (left) and the distribution on the density of states (DOS) (right) for the (a)–(e) M1–M5 model within the NM state; the green dashed line represents the Fermi energy level.

    图 3  在NM态下(a)—(d) M2—M5的PDOS分布图, 能量零点设置为费米能级

    Fig. 3.  (a)–(d) The distribution on the PDOS for the M2–M5 within the NM state, and the Fermi energy level is set to zero.

    图 4  (a)—(e)/(f)—(j) M1—M5模型在FM/AFM构型态下的能带结构图和DOS分布图; 蓝色/红色实线表示自旋向上(SU)/向下(SD)的自旋方向; 绿色虚线指示对应的费米能级

    Fig. 4.  (a)–(e)/(f)–(j) The energy band structure maps and DOS distributions of the M1–M5 models within the FM/AFM states; the blue/red solid lines indicate the spin-up (SU)/-down (SD) directions; the green dashed lines indicate the corresponding Fermi energy levels.

    图 5  M2—M5分别是由F, Cl, O, OH边缘钝化的分子结器件模型图. 器件M2—M5左/右两端的蓝/红色渐变阴影部分分别代表器件的左/右电极, 中间部分为散射区

    Fig. 5.  M2–M5 are model diagrams of molecular junction devices, which are passivated by F, Cl, O or OH group, respectively. The blue/red gradient shaded portions at left/right sides of M2–M5 represent the left/right leads of the device, and the middle portion is the scattering region.

    图 6  该图展示器件(a), (b) M2, (c), (d) M3, (e), (f) M4, (g), (h) M5在P和AP自旋组态下的伏安特性(current-voltage, I-V)曲线; (i), (j)器件M4在FM/AFM磁性配置下的I-V曲线; 蓝色实线/红色虚线分别表示SU/SD自旋方向的电流

    Fig. 6.  The insets demonstrate the I-V curves of devices (a), (b) M2, (c), (d) M3, (e), (f) M4, and (g), (h) M5 within the P and AP spin grouping state; (i), (j) are the I-V curves of M4 within the FM/AFM magnetic configuration; the blue solid/red dashed lines denote the SU/SD directions, respectively.

    图 7  (a), (b)器件M4在P, AP自旋组态下的透射谱分布图, 实线和虚线分别表示DNR效应中峰值和谷值电压对应的透射谱; (c), (d), (e), (f)在P, AP组态下峰值和谷值时的局域态密度分布图; (g), (h)在P组态下峰值/谷值时的能带结构图和透射谱图, 蓝色和红色实线分别表示SU合SD的自旋方向. 全图中蓝色合黄色阴影区域表示对应的偏压窗.

    Fig. 7.  (a), (b) The transmission spectra of M4 within the P and AP spin configuration, and the solid and dashed lines indicate the transmission spectra corresponding to the peak and valley voltages in the DNR effect; (c), (d), (e), (f) the distributions about the LDOS at peak and valley voltages within the P and AP configurations, respectively; (g), (h) the energy band structures and the transmission spectra of M4 at the peak and valley voltages within P configuration, and blue and red solid lines indicate the SU and SD directions, respectively. The blue and yellow shaded areas on the entire map represent the corresponding bias window.

    图 8  (a), (b)器件M2, M4的自旋过滤系数随电压变化的曲线图; (c)/(d), (e)/(f)器件M4在P, AP组态下偏置电压为–0.4, –1.6 V时的SU/SD方向的电子传输路径, 蓝色/红色箭头表示电子从左/右移动到右/左电极的传输方向

    Fig. 8.  (a), (b) SFE versus voltage for M2 and M4; (c)/(d), (e)/(f) the electron transport paths for M4 in the SU/SD direction within the P, AP configuration at a bias voltage of –0.4, –1.6 V; the blue/red arrows indicate the direction of the electron transport path from left /right lead to the right/left lead.

  • [1]

    Ivanovskii A L 2013 Prog. Solid. State. Chem. 41 1Google Scholar

    [2]

    Djurišić A B, Li E H 1999 J. Appl. Phys. 85 7404Google Scholar

    [3]

    Wudl F 2002 J. Mater. Chem. 12 1959Google Scholar

    [4]

    Ebbesen T W 1996 Phys. Today 49 26

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [6]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009Google Scholar

    [7]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [8]

    Popov V N, Lambin P 2013 Phys. Rev. B 88 075427Google Scholar

    [9]

    Ni Y, Wang X, Tao W, Zhu S C, Yao K L 2016 Sci. Rep. 6 25914Google Scholar

    [10]

    Zhang X J, Peng D D, Xie X L, Li X B, Dong Y L, Long M Q 2021 Eur. Phys. J. B 94 86Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [12]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid. State. Commun. 146 351Google Scholar

    [13]

    Alexander B A, Suchismita G, Wen Z B, Irene C, Desalegne T, Feng M, Liu C N 2008 Nano Lett. 8 902Google Scholar

    [14]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256Google Scholar

    [15]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C. 116 5951

    [16]

    Majidi R 2018 J. Electron. Mater. 47 2890Google Scholar

    [17]

    Jafari S N, Hakimi Y, Rouhi S 2020 Physica E 119 114022Google Scholar

    [18]

    Zeng M G, Shen L, Cai Y Q, Sha Z D, Feng Y P 2010 Appl. Phys. Lett. 96 042104Google Scholar

    [19]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [20]

    Dong X S, Chen T, Liu G G, Xie L Z, Zhou G H, Long M Q 2022 ACS Sensors 7 3450Google Scholar

    [21]

    Li Y, Li X B, Zhang S D, Zhang X J, Long M Q 2022 J. Magn. Magn. Mater. 546 168842Google Scholar

    [22]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550Google Scholar

    [23]

    Lang N D, Avouris P 1998 Phys. Rev. Lett. 81 3515Google Scholar

    [24]

    Ding W C, Zhang J, Li X B, Chen T, Zhou G H 2022 Physica E 142 115316Google Scholar

    [25]

    Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X, Yang J L 2012 J. Chem. Phys. 136 064707Google Scholar

    [26]

    Evlashin S A, Tarkhov M A, Chernodubov D A, Inyushkin A V, Pilevsky A A, Dyakonov P V, Pavlov A A, Suetin N V, Akhatov I S, Perebeinos V 2021 Phys. Rev. Appl. 15 054057Google Scholar

    [27]

    Peng D D, Zhang X J, Li X B, Wu D, Long M Q 2018 J. Appl. Phys. 124 184303Google Scholar

    [28]

    Hu J, Ruan X, Chen Y P 2009 Nano. Lett. 9 2730Google Scholar

    [29]

    Zeng J, Chen K Q 2013 J. Mater. Chem. C 1 4014Google Scholar

    [30]

    Pan J B, Zhang Z H, Ding K H, Deng X Q, Guo C 2011 Appl. Phys. Lett. 98 092102Google Scholar

    [31]

    Li J, Zhang Z H, Qiu M, Yuan C, Deng X Q, Fan Z Q, Tang G P, Liang B 2014 Carbon 80 575Google Scholar

    [32]

    Meyer J C, Girit C O, Crommie M F, Zettl A 2008 Nature 454 319Google Scholar

    [33]

    Caridad J M, Calogero G, Pedrinazzi P, Santos J E, Impellizzeri A, Gunst T, Booth T J, Sordan R, Bøggild P, Brandbyge M 2018 Nano. Lett. 18 4675Google Scholar

    [34]

    Saffarzadeh A, Farghadan R 2011 Appl. Phys. Lett. 98 023106Google Scholar

    [35]

    Mohammadi A, Zaminpayma E 2018 Org. Electron. 61 334Google Scholar

    [36]

    Zhang L W, Yang Y Q, Chen J, Zheng X H, Zhang L, Xiao L T, Jia S T 2020 Phys. Chem. Chem. Phys. 22 18548Google Scholar

    [37]

    Bhattacharya B, Sarkar U 2016 J. Phys. Chem. C 120 26793Google Scholar

    [38]

    Li X B, Zhou J Y, Yu M, Li Y, Zhou K Z, Wang X J, Zhang X J, Long M Q 2023 J. Magn. Magn. Mater. 587 171367Google Scholar

    [39]

    Chen X, Xu W, Song B, He P 2020 J. Phys. Condens. Matter 32 215501Google Scholar

    [40]

    Cao L M, Li X B, Li Y, Zhou G H 2020 J. Mater. Chem. C 8 9313Google Scholar

    [41]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [42]

    Li X B, Cao L M, Long M Q, Liu Z R, Zhou G H 2018 Carbon 131 160Google Scholar

    [43]

    Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811Google Scholar

    [44]

    Ren H, Li Q X, Luo Y, Yang J L 2009 Appl. Phys. Lett. 94 173110Google Scholar

    [45]

    Li X B, Qi F, Zhao R D, Qiu Z J, Li Y, Long M Q, Zhou G H 2022 J. Mater. Chem. C 10 5292Google Scholar

    [46]

    彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强 2023 物理学报 72 058501Google Scholar

    Peng S P, Huang X D, Liu Q, Ren P, Wu D, Fan Z Q 2023 Acta Phys. Sin. 72 058501Google Scholar

    [47]

    Ding W C, Zhang J, Li X B, Zhou G H 2024 Appl. Surf. Sci. 664 160043Google Scholar

    [48]

    Yu G L, Ding W C, Xiao X B, Li X B, Zhou G H 2020 Nanoscale. Res. Lett. 15 185Google Scholar

    [49]

    Zhou Y H, Zeng J, Chen K Q 2014 Carbon 76 175Google Scholar

  • [1] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究. 物理学报, doi: 10.7498/aps.73.20231432
    [2] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 边修饰GeS2纳米带的电子特性及调控效应. 物理学报, doi: 10.7498/aps.73.20231670
    [3] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20230093
    [4] 杨维, 韩江朝, 曹元, 林晓阳, 赵巍胜. Fe3GeTe2/h-BN/石墨烯二维异质结器件中的高效率自旋注入. 物理学报, doi: 10.7498/aps.70.20202136
    [5] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应. 物理学报, doi: 10.7498/aps.68.20190817
    [6] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间. 物理学报, doi: 10.7498/aps.65.227302
    [7] 朱朕, 李春先, 张振华. 功能化扶手椅型石墨烯纳米带异质结的磁器件特性. 物理学报, doi: 10.7498/aps.65.118501
    [8] 柴丰涛, 岳继礼, 邱吴劼, 郭海波, 陈丽江, 施思齐. 正交相Fe2(MoO4)3的制备与表征及其负膨胀行为的第一性原理研究. 物理学报, doi: 10.7498/aps.65.056501
    [9] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, doi: 10.7498/aps.65.068503
    [10] 李永辉, 闫强, 周丽萍, 韩琴. 金纳米线接触构型相关的双重负微分电阻与整流效应. 物理学报, doi: 10.7498/aps.64.057301
    [11] 文平, 李春福, 赵毅, 张凤春, 童丽华. Cr,Mo,Ni在α-Fe(C)中占位、键合性质及合金化效应的第一性原理研究. 物理学报, doi: 10.7498/aps.63.197101
    [12] 杨理践, 刘斌, 高松巍, 陈立佳. 金属磁记忆效应的第一性原理计算与实验研究. 物理学报, doi: 10.7498/aps.62.086201
    [13] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.063601
    [14] 唐冬华, 薛林, 孙立忠, 钟建新. B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究. 物理学报, doi: 10.7498/aps.61.027102
    [15] 范志强, 谢芳. 硼氮原子取代掺杂对分子器件负微分电阻效应的影响. 物理学报, doi: 10.7498/aps.61.077303
    [16] 赵宇宏, 黄志伟, 李爱红, 穆彦青, 杨伟明, 侯华, 韩培德, 张素英. Nb在Ni3Al中取代行为及合金化效应的第一性原理研究. 物理学报, doi: 10.7498/aps.60.047103
    [17] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, doi: 10.7498/aps.59.4156
    [18] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究. 物理学报, doi: 10.7498/aps.59.6487
    [19] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, doi: 10.7498/aps.59.8037
    [20] 党宏丽, 王崇愚, 于 涛. γ-TiAl中Nb和Mo合金化效应的第一性原理研究. 物理学报, doi: 10.7498/aps.56.2838
计量
  • 文章访问数:  372
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-30
  • 修回日期:  2024-12-02
  • 上网日期:  2025-01-07

/

返回文章
返回