搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3GeTe2/h-BN/石墨烯二维异质结器件中的高效率自旋注入

杨维 韩江朝 曹元 林晓阳 赵巍胜

引用本文:
Citation:

Fe3GeTe2/h-BN/石墨烯二维异质结器件中的高效率自旋注入

杨维, 韩江朝, 曹元, 林晓阳, 赵巍胜

Efficient spin injection in Fe3GeTe2/h-BN/graphene heterostructure

Yang Wei, Han Jiang-Chao, Cao Yuan, Lin Xiao-Yang, Zhao Wei-Sheng
PDF
HTML
导出引用
  • 最近, 二维铁磁材料的发现加速了自旋电子学在超低功耗电子器件方面的应用. 其中, Fe3GeTe2通过实验调控, 比如界面层间耦合和离子液体调控, 可以使其居里温度达到室温, 具有广泛的应用前景. 本文基于密度泛函理论与非平衡格林函数方法, 研究了Fe3GeTe2/石墨烯二维异质结在有无氮化硼作隧穿层情况下的输运性质. 结果表明: 当Fe3GeTe2/石墨烯之间为透明接触时, 由于电子轨道杂化, 在 ± 0.1 V偏压下可以实现有效的自旋注入. 通过加入氮化硼作为隧穿层, 则可以在更宽偏压范围[–0.3 V, 0.3 V]内实现高效自旋隧穿注入; 并且, 由于Fe3GeTe2与石墨烯电子态在布里渊区的空间匹配程度取决于电子自旋方向, 相应出现的自旋过滤效应导致了接近100%的自旋极化率. 这些研究结果有望推动二维全自旋逻辑以及相关超低功耗自旋电子器件的发展.
    Recently, the discovery of intrinsic two-dimensional (2D) ferromagnetism has accelerated the application of spintronics in ultra-low power electronic device. Particularly, the Curie temperature of Fe3GeTe2 can be improved to room-temperature in several ways, such as interfacial exchange coupling and ionic liquid gating, which makes Fe3GeTe2 desirable for the practical application. In this work, we investigate the transport properties of Fe3GeTe2/graphene heterostructures with or without h-BN layers by utilizing the density functional theory combined with nonequilibrium Green’s function method. The results show that due to electronic orbital hybridization, the spin can be effectively injected into graphene with ± 0.1 V bias at the transparent contact interface of Fe3GeTe2/graphene. What is more, the efficient spin tunneling injection can be achieved in a wider bias range [–0.3 V, 0.3 V] by adding h-BN as a tunneling layer, where the spin filter effect that is induced by mismatched distribution of spin-dependent electronic states in the Brillouin zone, leads a spin polarizability to approach 100%. These results are helpful in the applications of 2D all-spin logic and the development of ultra-low power spintronic devices.
      通信作者: 林晓阳, XYLin@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51602013, 12004021)、中国科学技术协会青年人才托举工程(批准号: 2018QNRC001)、高等学校学科创新引智计划(批准号: B16001)、中央高校基本科研业务费和北京大数据科学与脑机智能高精尖创新中心资助的课题
      Corresponding author: Lin Xiao-Yang, XYLin@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51602013, 12004021), the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST) (Grant No. 2018QNRC001), the International Collaboration 111 Project, China (Grant No. B16001), the Fundamental Research Funds for the Central Universities of China, and the Beijing Advanced Innovation Centre for Big Data and Brain Computing (BDBC)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Li M, Su S, Wong H, Li L J 2019 Nature 567 169Google Scholar

    [3]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [4]

    Žutić I, Matos-Abiague A, Scharf B, Dery H, Belashchenko K 2019 Mater. Today 22 85Google Scholar

    [5]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [6]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [7]

    Deng Y J, Yu Y, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [8]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [9]

    Yu W, Li J, Herng T S, Wang Z, Zhao X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J, Chen Z, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. 31 1903779Google Scholar

    [10]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J, Xu X 2018 Nat. Mater. 17 778Google Scholar

    [11]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [12]

    Jiang S, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [13]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotechnol. 13 544Google Scholar

    [14]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B V, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [15]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, Han X 2019 Sci. Adv. 5 w8904Google Scholar

    [16]

    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [17]

    Burch K S, Mandrus D, Park J 2018 Nature 563 47Google Scholar

    [18]

    Lin X, Yang W, Wang K, Zhao W 2019 Nat. Electron. 2 274Google Scholar

    [19]

    Gong C, Zhang X 2019 Science 363 v4450Google Scholar

    [20]

    Dlubak B, Martin M, Deranlot C, Servet B, Xavier S, Mattana R, Sprinkle M, Berger C, De Heer W A, Petroff F, Anane A, Seneor P, Fert A 2012 Nat. Phys. 8 557Google Scholar

    [21]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [22]

    Li X, Lü J, Zhang J, You L, Su Y, Tsymbal E Y 2019 Nano Lett. 19 5133Google Scholar

    [23]

    Zhang L, Huang X, Dai H, Wang M, Cheng H, Tong L, Li Z, Han X, Wang X, Ye L, Han J 2020 Adv. Mater. 32 2002032Google Scholar

    [24]

    Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T, Zhao W, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [25]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [28]

    Brandbyge M, Mozos J, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [29]

    Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lv C, Bournel A, Zhao W 2021 Nanoscale 13 862

    [30]

    Maassen J, Ji W, Guo H 2011 Nano Lett. 11 151Google Scholar

  • 图 1  Fe3GeTe2/氮化硼(3)/石墨烯器件的(a)侧视图和(b)俯视图, 其中器件的电极区域由虚线框标出; 在器件的中心透射区Fe3GeTe2和石墨烯之间有0层或者3层氮化硼, 这里所示的模型是具有3层氮化硼的器件结构

    Fig. 1.  (a) The side view and (b) top view of Fe3GeTe2/h-BN(3)/graphene devices. The electrode regions of the device are indicated by a dashed frame. The number of h-BN layers between graphene and Fe3GeTe2 in the center region is 0 or 3. The model shown here is the device structure with 3 layers h-BN.

    图 2  (a) 透明接触器件的I-V曲线; (b) 透明接触器件石墨烯沟道中的自旋极化率; (c) 隧穿接触器件的I-V曲线; (d) 隧穿接触器件石墨烯沟道中的自旋极化率

    Fig. 2.  (a) I-V curves of the transparent contact device; (b) spin polarization in graphene channel of the transparent contact device; (c) I-V curves of the tunneling contact device; (d) spin polarization in graphene channel of the tunneling contact device.

    图 3  (a)透明接触器件和(b)隧穿接触器件的透射谱, 其中左边一列是自旋向上通道的透射谱, 右边一列是自旋向下通道的透射谱

    Fig. 3.  Transmission spectra of (a) the transparent contact devices and (b) the tunneling contact devices. The left column is the transmission spectra of the spin up channel and the right column is the transmission spectra of the spin down channel.

    图 4  (a) Fe3GeTe2/石墨烯异质结能带; (b) Fe3GeTe2/氮化硼/石墨烯异质结能带; (c) Fe3GeTe2/石墨烯异质结差分电荷密度, 其中绿色代表电子损耗, 黄色代表电子积聚; (d) 费米能级上k点依赖的Fe3GeTe2态密度分布; 图4(a)图4 (b) 中左边一列为自旋向上能带, 右边一列为自旋向下能带

    Fig. 4.  (a) Band structure of Fe3GeTe2/graphene heterojunction; (b) band structure of Fe3GeTe2/boron nitride/graphene heterojunction; (c) the differential charge density of Fe3GeTe2/graphene heterojunction, where the green and yellow represent electron depletion and accumulation respectively; (d) the k dependent density of states distribution at the Fermi level in Fe3GeTe2. In Fig. 4(a) and Fig. 4(b), the left column represents the spin up bands, and the right column represents the spin down bands.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Li M, Su S, Wong H, Li L J 2019 Nature 567 169Google Scholar

    [3]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [4]

    Žutić I, Matos-Abiague A, Scharf B, Dery H, Belashchenko K 2019 Mater. Today 22 85Google Scholar

    [5]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [6]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [7]

    Deng Y J, Yu Y, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [8]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [9]

    Yu W, Li J, Herng T S, Wang Z, Zhao X, Chi X, Fu W, Abdelwahab I, Zhou J, Dan J, Chen Z, Chen Z, Li Z, Lu J, Pennycook S J, Feng Y P, Ding J, Loh K P 2019 Adv. Mater. 31 1903779Google Scholar

    [10]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J, Xu X 2018 Nat. Mater. 17 778Google Scholar

    [11]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [12]

    Jiang S, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [13]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotechnol. 13 544Google Scholar

    [14]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B V, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [15]

    Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, Han X 2019 Sci. Adv. 5 w8904Google Scholar

    [16]

    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [17]

    Burch K S, Mandrus D, Park J 2018 Nature 563 47Google Scholar

    [18]

    Lin X, Yang W, Wang K, Zhao W 2019 Nat. Electron. 2 274Google Scholar

    [19]

    Gong C, Zhang X 2019 Science 363 v4450Google Scholar

    [20]

    Dlubak B, Martin M, Deranlot C, Servet B, Xavier S, Mattana R, Sprinkle M, Berger C, De Heer W A, Petroff F, Anane A, Seneor P, Fert A 2012 Nat. Phys. 8 557Google Scholar

    [21]

    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo A F 2018 Nano Lett. 18 4303Google Scholar

    [22]

    Li X, Lü J, Zhang J, You L, Su Y, Tsymbal E Y 2019 Nano Lett. 19 5133Google Scholar

    [23]

    Zhang L, Huang X, Dai H, Wang M, Cheng H, Tong L, Li Z, Han X, Wang X, Ye L, Han J 2020 Adv. Mater. 32 2002032Google Scholar

    [24]

    Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T, Zhao W, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [25]

    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X, McGuire M A 2019 ACS Nano 13 4436Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [28]

    Brandbyge M, Mozos J, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [29]

    Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lv C, Bournel A, Zhao W 2021 Nanoscale 13 862

    [30]

    Maassen J, Ji W, Guo H 2011 Nano Lett. 11 151Google Scholar

  • [1] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [2] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究. 物理学报, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [3] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [5] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [6] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [7] 卢欣, 谢孟琳, 刘景, 金蔚, 李春, GeorgiosLefkidis, WolfgangHübner. FemB20 (m = 1, 2)团簇中超快自旋动力学的第一性原理研究. 物理学报, 2021, 70(12): 127505. doi: 10.7498/aps.70.20210056
    [8] 李恬静, 操秀霞, 唐士惠, 何林, 孟川民. 蓝宝石冲击消光晶向效应的第一性原理. 物理学报, 2020, 69(4): 046201. doi: 10.7498/aps.69.20190955
    [9] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [10] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应. 物理学报, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [11] 张薇, 陈凯彬, 陈震东. Cr二维单层薄片中Jahn-Teller效应的第一性原理研究. 物理学报, 2018, 67(23): 237301. doi: 10.7498/aps.67.20181669
    [12] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究. 物理学报, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [13] 杨明宇, 杨倩, 张勃, 张旭, 蔡颂, 薛玉龙, 周铁戈. 5d过渡金属原子掺杂六方氮化铝单层的磁性及自旋轨道耦合效应:可能存在的二维长程磁有序. 物理学报, 2017, 66(6): 063102. doi: 10.7498/aps.66.063102
    [14] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [15] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间. 物理学报, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [16] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [17] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究. 物理学报, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [18] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [19] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [20] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算. 物理学报, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
计量
  • 文章访问数:  7369
  • PDF下载量:  570
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 修回日期:  2021-01-03
  • 上网日期:  2021-06-10
  • 刊出日期:  2021-06-20

/

返回文章
返回