搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

砷(III)对p53突变蛋白活性恢复作用的太赫兹物理机制

唐朝 张广旭 胡钧 吕军鸿

引用本文:
Citation:

砷(III)对p53突变蛋白活性恢复作用的太赫兹物理机制

唐朝, 张广旭, 胡钧, 吕军鸿

Terahertz physical mechanism of arsenic (III) restoring p53 mutant protein activity

Tang Chao, Zhang Guang-Xu, Hu Jun, Lü Jun-Hong
PDF
HTML
导出引用
  • 通过小分子配体结合(如砷剂)来恢复p53突变蛋白活性是抑癌蛋白靶向治疗的重要策略, 但p53蛋白在功能恢复过程中的分子集体动力学变化及其作用等机制基础尚不清楚. 本文基于全原子弹性网络模型的正则模式分析了p53蛋白位于太赫兹频率的低频集体振动模式, 以期解析砷(III)对p53突变蛋白功能恢复作用所涉及的物理机理. 结果表明, 在砷(III)配体结合后p53突变蛋白的DNA结合域的最低频率集体振动模式得到了有效恢复. 进一步从原子骨架波动和太赫兹频率振动模态统计的角度分析了p53蛋白分子功能恢复的运动特征, 并基于残基动力学相关性讨论了其运动耦合机理. 本文从太赫兹生物物理的角度揭示了砷(III)对p53蛋白活性恢复的可能机制, 为蛋白分子低频运动特性与蛋白功能之间的联系提供了新的证据.
    Recovering the protein activity of p53 mutants through small molecule ligand binding (eg. arsenic) is an important strategy for tumor suppressor therapy. However, the mechanistic basis on the changes of collective dynamics and their roles of p53 protein in functional recovery process has not been fully elucidated. Herein, the normal mode calculations based on all-atom elastic network model are employed to characterize the terahertz low frequency motions of core DNA-binding domain (p53C) which is essential for p53 protein activities in transcriptional transactivation. We find that the lowest-frequency collective vibration mode of the p53C mutant is effectively restored by the binding of arsenic (III) ligand. In R249S mutant, the L1 loop is stabilized through restricting the swing-out movement. The results obtained from atomic backbone fluctuations suggest that the arsenic binding can significantly improve the L1 loop and L2 loop fluctuations. The statistical analysis of low frequency vibration mode reflects that the arsenic-bound R249S mutant has an apparent recovery of frequency shift in the terahertz range. The residue-residue motion correlation also suggests that structural components binding to arsenic are dynamically coupled. In the H2 helix with arsenic-binding residues, the motions of C124, C135, M133 and C141, are correlated with the arsenic recovery. These results provide the terahertz biophysical mechanism for the recovery effect of arsenic (III) on the p53 protein activity and new evidence for the coupling of the low-frequency vibration characteristics of protein structures with its function, thus giving a new physical insight into the p53 related cancer therapies.
      通信作者: 吕军鸿, lvjh@sari.ac.cn
    • 基金项目: 国家自然科学基金(批准号: U1732130)和中国科学院前沿科学重点研究计划项目(批准号: QYZDJSSW-SLH019)资助的课题
      Corresponding author: Lü Jun-Hong, lvjh@sari.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1732130) and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJSSW-SLH019)
    [1]

    Vousden K H, Lane D P 2007 Nat. Rev. Mol. Cell. Bio. 8 275Google Scholar

    [2]

    Zehir A, Benayed R, Shah R H, et al. 2017 Nat. Med. 23 703Google Scholar

    [3]

    Perdrix A, Najem A, Saussez S, et al. 2017 Cancers 9 172Google Scholar

    [4]

    丁笠, 张新跃 2020 扬州大学学报(农业与生命科学版) 41 57Google Scholar

    Ding L, Zhang X Y 2020 J. Yangzhou Univ. (Agric. Life Sci. Ed.) 41 57Google Scholar

    [5]

    Joerger A C, Fersht A R 2008 Annu. Rev. Biochem. 77 557Google Scholar

    [6]

    Canadillas J M P, Tidow H, Freund S M V, et al. 2006 Proc. Natl. Acad. Sci. U. S. A. 103 2109Google Scholar

    [7]

    Viadiu H, Fronza G, Inga A 2014 Subcell. Biochem. 85 119Google Scholar

    [8]

    Duan J, Nilsson L 2006 Biochemistry 45 7483Google Scholar

    [9]

    Kitayner M, Rozenberg H, Kessler N, et al. 2006 Mol. Cell 22 741Google Scholar

    [10]

    Cho Y J, Gorina S, Jeffrey P D, et al. 1994 Science 265 346Google Scholar

    [11]

    Petitjean A, Mathe E, Kato S, et al. 2007 Hum. Mutat. 28 622Google Scholar

    [12]

    Chen S, Wu J L, Liang Y, et al. 2021 Cancer Cell 39 225Google Scholar

    [13]

    Karplus M, McCammon J A 2002 Nat. Struct. Biol. 9 646Google Scholar

    [14]

    Kitao A, Go N 1999 Curr. Opin. Struct. Biol. 9 164Google Scholar

    [15]

    Acbas G, Niessen K A, Snell E H, et al. 2014 Nat. Commun. 5 3076Google Scholar

    [16]

    Niessen K A, Xu M, George D K, et al. 2019 Nat. Commun. 10 1026Google Scholar

    [17]

    Turton D A, Senn H M, Harwood T, et al. 2014 Nat. Commun. 5 3999Google Scholar

    [18]

    Bahar I, Lezon T R, Bakan A, et al. 2010 Chem. Rev. 110 1463Google Scholar

    [19]

    Bahar I, Lezon T R, Yang L-W, et al. 2010 Annu. Rev. Biophys. 39 23Google Scholar

    [20]

    Balog E, Perahia D, Smith J C, et al. 2011 J. Phys. Chem. B 115 6811Google Scholar

    [21]

    Berman H M, Westbrook J, Feng Z, et al. 2000 Nucleic Acids Res. 28 235Google Scholar

    [22]

    Eswar N, Webb B, Marti-Renom M A, et al. 2007 Curr. Protoc. Protein. Sci. 50 2.9.1Google Scholar

    [23]

    Guex N, Peitsch M C 1997 Electrophoresis 18 2714Google Scholar

    [24]

    Yao X Q, Skjærven L, Grant B J 2016 J. Phys. Chem. B 120 8276Google Scholar

    [25]

    Grant B J, Rodrigues A P C, ElSawy K M, et al. 2006 Bioinformatics 22 2695Google Scholar

    [26]

    Brooks B R, Janežič D, Karplus M 1995 J. Comput. Chem. 16 1522Google Scholar

    [27]

    Kaynak B T, Doruker P 2019 J. Chem. Inf. Model. 59 2352Google Scholar

    [28]

    Ichiye T, Karplus M 1991 Proteins 11 205Google Scholar

    [29]

    Tiwari S P, Fuglebakk E, Hollup S M, et al. 2014 BMC Bioinformatics 15 427Google Scholar

    [30]

    Alakent B, Baskan S, Doruker P 2011 J. Comput. Chem. 32 483Google Scholar

  • 图 1  p53C蛋白晶体结构 (a)砷(III)结合位点没有砷(III)结合时的局部细节; (b)砷(III)结合位点在砷(III)结合时的局部细节; (c) R249残基与相邻区域相互作用的局部示意图. 颜色标注如下: L1环及相邻区域(残基序列112—141)为黄色, L2环及相邻区域(残基序列163—195)为蓝色, L3环(残基序列236—251)为红色, H2螺旋(残基序列271—286)为紫色, DNA为青色/绿色. 除非注明, 后图颜色标注一致

    Fig. 1.  Structure of p53C: (a) The structure of As3+-binding region in the absence of As3+; (b) the structure of As3+-binding region with As3+; (c) R249 region in detail. It is colored as following: L1 loop and adjacent area (residues 112–141) in yellow, L2 loop and adjacent area (residues 163–195) in blue, L3 loop (residues 236–251) in red, H2 helix (residues 271–286) in purple and DNA in cyan/green. Unless otherwise specified, the colored regions in following figures are consistent with this.

    图 2  砷(III)对p53C突变体R249S的低频振动模式恢复 (a) 野生型p53C (wild type,WT) 、(b) R249S突变型p53C (R249S)、(c) 砷(III)结合的R249S突变型p53C的最低频率集体振动模式轨迹; (d)野生型p53C (wild type,WT) 、(e) R249S突变型p53C (R249S)、(f) 砷(III)结合的R249S突变型p53C的次低频率集体振动模式轨迹; 灰色箭头表示对应频率蛋白分子骨架的振动方向, 箭头长度代表相对振幅大小

    Fig. 2.  The trajectory of the lowest-frequency vibrations of (a) wild type (WT), (b) R249S, (c) R249S-As. The trajectory of the second lowest-frequency vibrations of (d) wild type (WT), (e) R249S, (f) R249S-As. Arrows represent the direction of motion of each residue from the initial position, with length of arrows indicating vibration amplitude, relatively.

    图 3  (a) p53C野生型、R249S突变型和砷(III)结合的R249S突变型p53C的原子波动分析(沿X轴的灰色条代表序列, 其中用四种不同颜色分别标记4个区域); (b) L1环区域(残基序列112—124)的局部原子波动分析; (c) L2环区域(残基序列163—195)的局部原子波动分析

    Fig. 3.  (a) Atomic fluctuation analysis of the DNA binding domain of the WT, R249S, and R249S-As. The gray bar above the X axis represents the sequence, where four regions are marked with four colors. (b) The details of the yellow (L1, residues 112–124) dotted areas. (c) The details of the blue (L2, residues 163–195) dotted areas.

    图 4  (a) 0—1.0 THz内的野生型p53C (WT), 突变体(R249S)和砷(III)结合突变体(R249S-As)的振动谱; (b) 突变体(R249S)和砷(III)结合突变体(R249S-As)相对于野生型p53 C的前200个振动模式的太赫兹振动频率偏移百分数, 插图为砷(III)结合后突变体的频率恢复比例; (c) R249S和R249S-As在野生型p53C特定频率处对应振动模式的频率偏移百分数

    Fig. 4.  (a) Mode index spectra of wild-type p53C (WT), mutant (R249S) and As-bound mutant (R249S-As) in 0–1.0 THz; (b) the frequency shift (%) of the R249S and the R249S-As mutant from the WT in first 200 collective vibration modes, and the insert shows the proportion of frequency recovery for the As-bound R249S mutants; (c) the frequency shift (%) of corresponding mode of the R249S and the R249S-As at certain frequencies of WT.

    图 5  野生型p53C的动力学相关矩阵. 每个点根据它在X轴和Y轴上的两个残基的Cab值(残基a与b之间的相关性)来着色. Cab值根据所得太赫兹振动模态计算, 其中Cab为1, –1和0, 分别表示完全相关、完全负相关和不相关. 横轴上用绿色虚线标出了4个与DNA作用的残基, 纵轴上用黄色虚线标出了4个与砷(III)结合的残基. 黑色虚线框标出了4个正相关区域, 其中L1与H2相关区域被专门表示在右边, 并与R249S突变体, 砷(III)结合R249S突变体动力学相关矩阵的对应区域比较

    Fig. 5.  Residue-residue motion correlation map of the DNA binding domain of the wild type p53C, where each point is colored according to its Cab (correlation between residues a and b) of the two residues on the X axis and Y axis. The Cab are calculated by all modes, where Cab = 1, –1, 0 means completely correlation, completely anticorrelation and no correlation, respectively. The four DNA-contact residues are marked in dark green dash curves on the X axis, and the four As-bound residues are marked in yellow dash curves on the Y axis. The black dashed boxes mark the four positively correlated regions, where the correlated regions between L1 and H2 are specifically represented on the right and compared with the corresponding regions of the correlation map of the R249S and the As-bound R249S mutant.

  • [1]

    Vousden K H, Lane D P 2007 Nat. Rev. Mol. Cell. Bio. 8 275Google Scholar

    [2]

    Zehir A, Benayed R, Shah R H, et al. 2017 Nat. Med. 23 703Google Scholar

    [3]

    Perdrix A, Najem A, Saussez S, et al. 2017 Cancers 9 172Google Scholar

    [4]

    丁笠, 张新跃 2020 扬州大学学报(农业与生命科学版) 41 57Google Scholar

    Ding L, Zhang X Y 2020 J. Yangzhou Univ. (Agric. Life Sci. Ed.) 41 57Google Scholar

    [5]

    Joerger A C, Fersht A R 2008 Annu. Rev. Biochem. 77 557Google Scholar

    [6]

    Canadillas J M P, Tidow H, Freund S M V, et al. 2006 Proc. Natl. Acad. Sci. U. S. A. 103 2109Google Scholar

    [7]

    Viadiu H, Fronza G, Inga A 2014 Subcell. Biochem. 85 119Google Scholar

    [8]

    Duan J, Nilsson L 2006 Biochemistry 45 7483Google Scholar

    [9]

    Kitayner M, Rozenberg H, Kessler N, et al. 2006 Mol. Cell 22 741Google Scholar

    [10]

    Cho Y J, Gorina S, Jeffrey P D, et al. 1994 Science 265 346Google Scholar

    [11]

    Petitjean A, Mathe E, Kato S, et al. 2007 Hum. Mutat. 28 622Google Scholar

    [12]

    Chen S, Wu J L, Liang Y, et al. 2021 Cancer Cell 39 225Google Scholar

    [13]

    Karplus M, McCammon J A 2002 Nat. Struct. Biol. 9 646Google Scholar

    [14]

    Kitao A, Go N 1999 Curr. Opin. Struct. Biol. 9 164Google Scholar

    [15]

    Acbas G, Niessen K A, Snell E H, et al. 2014 Nat. Commun. 5 3076Google Scholar

    [16]

    Niessen K A, Xu M, George D K, et al. 2019 Nat. Commun. 10 1026Google Scholar

    [17]

    Turton D A, Senn H M, Harwood T, et al. 2014 Nat. Commun. 5 3999Google Scholar

    [18]

    Bahar I, Lezon T R, Bakan A, et al. 2010 Chem. Rev. 110 1463Google Scholar

    [19]

    Bahar I, Lezon T R, Yang L-W, et al. 2010 Annu. Rev. Biophys. 39 23Google Scholar

    [20]

    Balog E, Perahia D, Smith J C, et al. 2011 J. Phys. Chem. B 115 6811Google Scholar

    [21]

    Berman H M, Westbrook J, Feng Z, et al. 2000 Nucleic Acids Res. 28 235Google Scholar

    [22]

    Eswar N, Webb B, Marti-Renom M A, et al. 2007 Curr. Protoc. Protein. Sci. 50 2.9.1Google Scholar

    [23]

    Guex N, Peitsch M C 1997 Electrophoresis 18 2714Google Scholar

    [24]

    Yao X Q, Skjærven L, Grant B J 2016 J. Phys. Chem. B 120 8276Google Scholar

    [25]

    Grant B J, Rodrigues A P C, ElSawy K M, et al. 2006 Bioinformatics 22 2695Google Scholar

    [26]

    Brooks B R, Janežič D, Karplus M 1995 J. Comput. Chem. 16 1522Google Scholar

    [27]

    Kaynak B T, Doruker P 2019 J. Chem. Inf. Model. 59 2352Google Scholar

    [28]

    Ichiye T, Karplus M 1991 Proteins 11 205Google Scholar

    [29]

    Tiwari S P, Fuglebakk E, Hollup S M, et al. 2014 BMC Bioinformatics 15 427Google Scholar

    [30]

    Alakent B, Baskan S, Doruker P 2011 J. Comput. Chem. 32 483Google Scholar

  • [1] 刘泉澄, 杨富, 张祺, 段勇威, 邓琥, 尚丽平. 太赫兹光谱学研究CL-20/MTNP共晶振动特性. 物理学报, 2024, 73(19): 193201. doi: 10.7498/aps.73.20240944
    [2] 周晗, 耿轶钊, 晏世伟. p53活性四聚体全原子分子动力学分析. 物理学报, 2024, 73(4): 048701. doi: 10.7498/aps.73.20231515
    [3] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [4] 陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮. 基于Rydberg原子天线的太赫兹测量. 物理学报, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [5] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [6] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究. 物理学报, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [7] 孙远昆, 郭良浩, 王凯程, 王少萌, 宫玉彬. 太赫兹波对钾离子通道蛋白二级结构影响的分子动力学模拟. 物理学报, 2021, 70(24): 248701. doi: 10.7498/aps.70.20211725
    [8] 杨红丽, 刘楠, 杨联贵. Mdm2介导的正反馈环对p53基因网络振荡行为的影响. 物理学报, 2021, 70(13): 138701. doi: 10.7498/aps.70.20210015
    [9] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [10] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [11] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [12] 樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏. 低温生长砷化镓的超快光抽运-太赫兹探测光谱. 物理学报, 2017, 66(8): 087801. doi: 10.7498/aps.66.087801
    [13] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究. 物理学报, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [14] 孙怡雯, 钟俊兰, 左剑, 张存林, 但果. 血凝素蛋白及抗体相互作用的太赫兹光谱主成分分析. 物理学报, 2015, 64(16): 168701. doi: 10.7498/aps.64.168701
    [15] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究. 物理学报, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [16] 王其强, 谈承杰, 朱平. P53基因三周期性与密码子偏好性的相关性. 物理学报, 2014, 63(4): 048701. doi: 10.7498/aps.63.048701
    [17] 秦卫阳, 王红瑾, 高行山. 非线性恢复力耦合的振动系统广义同步与参数识别. 物理学报, 2008, 57(1): 42-45. doi: 10.7498/aps.57.42
    [18] 王渭源. 用阶跃恢复法测定砷化镓结型(p-n和M-S结)两极管的载流子寿命. 物理学报, 1979, 28(3): 341-349. doi: 10.7498/aps.28.341
    [19] 王守武, 庄蔚华, 彭怀德, 庄婉如. 砷化镓p-n结的受激发射的光谱特性. 物理学报, 1965, 21(5): 1077-1079. doi: 10.7498/aps.21.1077
    [20] 阮刚, 陈宁锵. 流体静压力对高简并砷化镓P-N结某些参数的影响. 物理学报, 1964, 20(8): 806-813. doi: 10.7498/aps.20.806
计量
  • 文章访问数:  6506
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-04-16
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-06-20

/

返回文章
返回