搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FemB20 (m = 1, 2)团簇中超快自旋动力学的第一性原理研究

卢欣 谢孟琳 刘景 金蔚 李春 GeorgiosLefkidis WolfgangHübner

引用本文:
Citation:

FemB20 (m = 1, 2)团簇中超快自旋动力学的第一性原理研究

卢欣, 谢孟琳, 刘景, 金蔚, 李春, GeorgiosLefkidis, WolfgangHübner

First-principles study of ultrafast spin dynamics in FemB20 (m = 1, 2) clusters

Lu Xin, Xie Meng-Lin, Liu Jing, Jin Wei, Li Chun, Georgios Lefkidis, Wolfgang Hübner
PDF
HTML
导出引用
  • 利用量子化学第一性原理计算, 对FeB20和Fe2B20团簇的几何构型、电子结构以及由激光诱导的超快自旋动力学进行了研究. 计算结果发现, FeB20团簇中Fe原子倾向吸附于B20管内, 而Fe2B20团簇的两个Fe原子分居管内外时更稳定. 后者由于磁原子个数的增多, 引入了更多的d电子态而表现出结构整体能级的下移; 同时, 由于该结构两磁原子吸附环境的不同, 使得其能态具有不同自旋局域的可能性. 基于体系所得多体电子基态和激发态, 在特定激光脉冲诱导下, 在两个团簇上均实现了亚皮秒时间尺度内的超快自旋翻转和自旋交叉两种动力学过程. 其中前者均可逆, 且保真度都高达89.7%及以上, 后者保真度略低, 均在78%及以下. 另外, 在Fe2B20团簇上, 实现了两个Fe原子之间的超快自旋转移动力学, 其所需激光能量由于初末态较大的能级差和较多的中间态参与而较之其他动力学最高. 本文工作为吸附磁原子的管状硼团簇体系上所实现的超快自旋动力学功能进行了预测, 可望对其未来的实验实现以及相关自旋逻辑功能器件的设计和应用提供理论指导.
    In this study, we use first-principles calculations to investigate the geometry, the electronic and the magnetic structure as well as to propose the laser-induced ultrafast spin dynamics on the tubular FeB20 and Fe2B20 clusters. Our results show that the FeB20 is a stable configuration when its Fe atom gets preferably adsorbed inside the B20 tube, while the Fe2B20 is more stable configuration when one of its two Fe atoms is located inside and the other outside the boron tube. In the latter cluster, due to the higher number of d states introduced by the additional magnetic atom, the density-of-states in the low-energy region becomes higher, thus leading to richer spin dynamics. The different local geometries of the two Fe atoms lead to a multitude of many-body states with high degree of spin-density localization. Based on the calculated ground state and excited states and by using suitably tailored laser pulses we achieve ultrafast spin-flip and spin crossover scenarios for both structures. Besides, the spin-flips reach a high fidelity (above 89.7%) and are reversible, while the crossovers have lower fidelity (below 78%) and are irreversible. We also propose an ultrafast spin-transfer process from Fe2 to Fe1 for Fe2B20. The present investigation, in which we predict various ultrafast spin dynamic taken by magnetic atoms absorbed inside and outside of tubular boron clusters, is expected to provide significant theoretical guidance for the future experimental implementation and the potential applications of the relevant spin logic functional devices.
      通信作者: 金蔚, jinwei@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11504223, 11872309)和陕西省自然科学基础研究计划(批准号: 2017JM1033)资助的课题
      Corresponding author: Jin Wei, jinwei@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504223, 11872309) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2017JM1033)
    [1]

    Bogani L, Wernsdorfer W 2008 Nat. Mater. 7 179Google Scholar

    [2]

    Khajetoorians A A, Heinrich A J 2016 Science 352 296Google Scholar

    [3]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [4]

    Prinz G A 1998 Science 282 1660Google Scholar

    [5]

    Bader S D, Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71Google Scholar

    [6]

    Dietl T 2005 J. Magn. Magn. Mater. 290-291 14Google Scholar

    [7]

    Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [8]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [9]

    Scholl A, Baumgarten L, Jacquemin R, Eberhardt W 1997 Phys. Rev. Lett. 79 5146Google Scholar

    [10]

    Pfau B, Schaffert S, Müller L, Gutt C, Al-shemmary. A, Büttner F, Delaunay R, Düsterer S, Flewett S, Frömter R, Geilhufe J, Guehrs E, Günther C M, Hawaldar R, Hille M, Jaouen N, Kobs A, Li K, Mohanty J, Redlin H, Schlotter W F, Stickler D, Treusch R, Vodungbo B, Kläui M, Oepen H P, Lüning J, Grübel G, Eisebitt S 2012 Nat. Commun. 3 1100Google Scholar

    [11]

    Koopmans B, Ruigrok J J M, Longa F D, de Jonge W J M 2005 Phys. Rev. Lett. 95 267207Google Scholar

    [12]

    Steiauf D, Fähnle M 2009 Phys. Rev. B 79 140401Google Scholar

    [13]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [14]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

    [15]

    Gómez-Abal R, Hübner W 2002 Phys. Rev. B 65 195114Google Scholar

    [16]

    Zhang Z Z, Cui B, Wang G Z, Ma B, Jin Q Y, Liu Y W 2010 Appl. Phys. Lett. 97 172508Google Scholar

    [17]

    Zhang W, Liu Q, Yuan Z, Xia K, He W, Zhan Q F, Zhang X Q, Cheng Z H 2019 Phys. Rev. B 100 104412Google Scholar

    [18]

    Lefkidis G, Reyes S A 2016 Phys. Rev. B 94 144433Google Scholar

    [19]

    李春, 杨帆, Lefkidis G, Hübner W 2011 物理学报 60 017802Google Scholar

    Li C, Yang F, Lefkidis G, Hübner W 2011 Acta Phys. Sin. 60 017802Google Scholar

    [20]

    Chaudhuri D, Xiang H P, Lefkidis G, Hübner W 2014 Phys. Rev. B 90 245113Google Scholar

    [21]

    Jin W, Li C, Lefkidis G, Hübner W 2014 Phys. Rev. B 89 024419Google Scholar

    [22]

    Chaudhuri D, Lefkidis G, Hübner W 2017 Phys. Rev. B 96 184413Google Scholar

    [23]

    Li C, Zhang S B, Jin W, Lefkidis G, Hübner W 2014 Phys. Rev. B 89 184404Google Scholar

    [24]

    Lefkidis G, Hübner W 2007 Phys. Rev. B 76 014418Google Scholar

    [25]

    Dong C D, Lefkidis G, Hübner W 2013 Phys. Rev. B 88 214421Google Scholar

    [26]

    Hübner W, Lefkidis G 2014 Phys. Rev. B 90 024401Google Scholar

    [27]

    Liu J, Li C, Jin W, Lefkidis G, Hübner W 2021 Phys. Rev. Lett. 126 037402Google Scholar

    [28]

    Li J H, Sun F, Du H L, Hong H L, Wang K H, Bian J 2019 Univ. Chem. Educ. 34 117Google Scholar

    [29]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. U. S. A. 102 961Google Scholar

    [30]

    An W, Bulusu S, Gao Y, Zeng X C 2006 J. Chem. Phys. 124 154310Google Scholar

    [31]

    Marques M A L, Botti S 2005 J. Chem. Phys. 123 014310Google Scholar

    [32]

    Tian J F, Xu Z C, Shen C M, Liu F, Xu N S, Gao H J 2010 Nanoscale 2 1375Google Scholar

    [33]

    刘立仁, 雷雪玲, 陈杭, 祝恒江 2009 物理学报 58 5355Google Scholar

    Liu L R, Lei X L, Chen H, Zhu H J 2009 Acta Phys. Sin. 58 5355Google Scholar

    [34]

    Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Edit. 46 8503Google Scholar

    [35]

    Li W L, Romanescu C, Jian T, Wang L S 2012 J. Am. Chem. Soc. 134 13228Google Scholar

    [36]

    Liu C S, Wang X F, Ye X J, Yan X H, Zeng Z 2014 J. Chem. Phys. 141 194306Google Scholar

    [37]

    Liang W Y, Das A, Dong X, Cui Z H 2018 Phys. Chem. Chem. Phys. 20 16202Google Scholar

    [38]

    Xu C, Cheng L J, Yang J L 2014 J. Chem. Phys. 141 124301Google Scholar

    [39]

    Tam N M, Pham H T, Duong L V, Pham-Ho, My P, Nguyen M T 2015 Phys. Chem. Chem. Phys. 17 3000Google Scholar

    [40]

    Ruan W, Xie A D, Wu D L, Luo W L, Yu X G 2014 Chin. Phys. B 23 033101Google Scholar

    [41]

    阮文, 余晓光, 谢安东, 伍冬兰, 罗文浪 2014 物理学报 63 243101Google Scholar

    Ruan W, Yu X G, Xie A D, Wu D L, Luo W L 2014 Acta Phys. Sin. 63 243101Google Scholar

    [42]

    雷雪玲, 祝恒江, 葛桂贤, 王先明, 罗有华 2008 物理学报 57 5491Google Scholar

    Lei X L, Zhu H J, Ge G X, Wang X M, Luo Y H 2008 Acta Phys. Sin. 57 5491Google Scholar

    [43]

    Popov I A, Jian T, Lopez G V, Boldyrev A I, Wang L S 2015 Nat. Commun. 6 8654Google Scholar

    [44]

    Penev E S, Bhowmick S, Sadrzadeh A, Yakobson B I 2012 Nano Lett. 12 2441Google Scholar

    [45]

    Li X Y, Li X X, Yang J L 2019 J. Phys. Chem. Lett. 10 4417Google Scholar

    [46]

    Liu J, Zhang Y M, Li C, Jin W, Lefkidis G, Hübner W 2020 Phys. Rev. B 102 024416Google Scholar

    [47]

    Hübner W, Kersten S, Lefkidis G 2009 Phys. Rev. B 79 184431Google Scholar

    [48]

    Li C, Jin W, Xiang H P, Lefkidis G, Hübner W 2011 Phys. Rev. B 84 054415Google Scholar

    [49]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian16 Revision B. 01 (Gaussian Inc., Wallingford, CT)

    [50]

    Jin W, Rupp F, Chevalier K, Wolf M M N, Colindres Rojas M, Lefkidis G, Krüger H J, Diller R, Hübner W 2012 Phys. Rev. Lett. 109 267209Google Scholar

    [51]

    Nakatsuji H 1979 Chem. Phys. Lett. 67 329Google Scholar

    [52]

    Koseki S, Schmidt M W, Gordon M S 1998 J. Phys. Chem. A 102 10430Google Scholar

    [53]

    Lefkidis G, Hübner W 2005 Phys. Rev. Lett. 95 077401Google Scholar

    [54]

    Cash J R, Karp A H 1990 ACM Trans. Math. Softwave 16 201Google Scholar

    [55]

    Hartenstein T, Li C, Lefkidis G, Hübner W 2008 J. Phys. D: Appl. Phys. 41 164006Google Scholar

    [56]

    Du H, Liu J, Zhang N, Chang J, Jin W, Li C, Lefkidis G, Hübner W 2019 Phys. Rev. B 99 134430Google Scholar

    [57]

    Zhang N, Du H, Chang J, Jin W, Li C, Lefkidis G, Hübner W 2018 Phys. Rev. B 98 104431Google Scholar

    [58]

    Wang P P, Qiu M Y, Lu X, Jin W, Li C, Lefkidis G, Hübner W 2020 Phys. Rev. B 101 104414Google Scholar

    [59]

    Hogue R W, Singh S, Brooker S 2018 Chem. Soc. Rev. 47 7303Google Scholar

    [60]

    Rupp F, Chevalier K, Graf M, Schmitz M, Kelm H, Grün A, Zimmer M, Gerhards M, van Wüllen C, Krüger H J, Diller R 2017 Chem. Eur. J. 23 2119Google Scholar

    [61]

    Her J L, Matsuda Y H, Nakano M, Niwa Y, Inada Y 2012 J. Appl. Phys. 111 053921Google Scholar

    [62]

    Létard J F, Guionneau P, Goux-Capes L 2004 Towards Spin Crossover Applications, in Spin Crossover in Transition Metal Compounds III, Topics in Current Chemistry (Vol. 235) (Berlin, Heidelberg: Springer) pp221−249

    [63]

    Bousseksou A, Molnár G, Salmon L, Nicolazzi W 2011 Chem. Soc. Rev. 40 3313Google Scholar

  • 图 1  优化后的团簇结构 (侧视图和俯视图) (a) B20; (b) FeB20; (c) Fe2B20; 其中, 俯视图中的键长单位为 Å

    Fig. 1.  Side- and top-viewed optimized geometries of clusters: (a) B20; (b) FeB20; (c) Fe2B20. The bond lengths are in Å.

    图 2  FeB20与Fe2B20的SAC-CI能级, 黑色虚线表示单重态, 红色实线表示三重态. 其中, 各自旋动力学所涉及的有关初、末态在未考虑自旋轨道耦合时的能级位置被明确标出

    Fig. 2.  The SAC-CI energy levels of clusters FeB20 and Fe2B20. The singlet and triplet terms are denoted by the black dashed and red solid lines, respectively. The related terms from which the involved initial and final states in the spin dynamics to be discussed later originate before the inclusion of SOC are marked.

    图 3  超快自旋翻转动力学 (a) FeB20团簇的自旋翻转过程; (b) Fe2B20团簇的自旋翻转过程. 其中各动力学中初态、末态和中间态分别由黑色虚线、红色实线和点线表示

    Fig. 3.  Ultrafast spin flip scenarios: (a) Spin-flip process in FeB20; (b) spin-flip process in Fe2B20. The initial, final, and intermediate states involved in each of the spin-flip processes are represented by the black dashed, red solid, and dotted lines, respectively.

    图 4  Fe2B20团簇上得到的超快自旋转移动力学, 其中初态、末态和中间态分别由黑色虚线、红色实线和点线表示

    Fig. 4.  Ultrafast spin-transfer scenario in Fe2B20. The initial, final, and intermediate states involved in the spin-transfer process are represented by the black dashed, red solid, and dotted lines, respectively.

    图 5  超快自旋交叉动力学 (a) FeB20团簇的自旋交叉过程; (b) Fe2B20团簇的自旋交叉过程; 其中各动力学中初态、末态和中间态分别由黑色虚线、红色实线和点线表示

    Fig. 5.  Ultrafast spin crossover scenarios: (a) Spin-crossover process in FeB20; (b) spin-crossover process in Fe2B20. The initial, final, and intermediate states involved in each of the spin-crossover processes are represented by black dashed, red solid, and dotted lines, respectively.

      团簇FeB20与Fe2B20的其他稳定构型

    .  Other stable geometries of clusters FeB20 and Fe2B20.

    表 1  Fe2B20中具有单磁中心自旋局域能态的能量、自旋期望值及自旋密度

    Table 1.  Energies, spin expectation values, and spin density of the states with spin localized on one single magnetic atom for cluster Fe2B20.

    StructureStateEnergy/eV$ \left\langle { {S}_{x} } \right\rangle $$ \left\langle { {S}_{y} } \right\rangle $$ \left\langle { {S}_{z} } \right\rangle $Spin density
    Fe1Fe2B20
    $ \left| {1} \right\rangle $00.38–0.8700.0011.9190.015
    $ \left| {2} \right\rangle $0.001–0.590.7300.0011.9110.015
    $ \left| {5} \right\rangle $0.5130.21–0.4200.0020.9460.023
    $ \left| {6} \right\rangle $0.515–0.120.4600.0020.9620.023
    $ \left| {17} \right\rangle $1.7970.16–0.7200.0221.4730.224
    $ \left| {18} \right\rangle $1.797–0.420.0500.0130.8390.13
    Fe2B20$ \left| {19} \right\rangle $1.7970.260.6700.0211.4320.22
    (B: θ = 90°, φ = 90°)$ \left| {25} \right\rangle $2.0020.41–0.3500.0041.0990.120
    $ \left| {26} \right\rangle $2.003–0.230.5400.0051.1890.133
    $ \left| {39} \right\rangle $2.658–0.02–0.6301.1140.0840.261
    $ \left| {41} \right\rangle $2.659–0.010.6301.1140.0840.261
    $ \left| {56} \right\rangle $2.9480.42–0.6300.0261.4120.305
    $ \left| {57} \right\rangle $2.949–0.520.5500.0261.4110.303
    下载: 导出CSV

    表 2  各自旋动力学过程中初、末态的能量、自旋期望值与自旋密度

    Table 2.  Energies, spin expectation values, and spin densities of the initial and final states of each scenario.

    ScenarioStructureStateEnergy/eV$ \left\langle { {S}_{x} } \right\rangle $$ \left\langle { {S}_{y} } \right\rangle $$ \left\langle { {S}_{z} } \right\rangle $Spin density
    Fe1Fe2
    Flip FeB20$ \left| {4} \right\rangle $ 1.021 –0.94 0 0 1.291
    (B: θ = 90°, φ = 90°) $ \left| {6} \right\rangle $ 1.022 0.94 0 0 1.291
    Fe2B20 $ \left| {8} \right\rangle $ 0.856 0 0 0.89 0.006 1.785
    (B: θ = 0°, φ = 90°) $ \left| {9} \right\rangle $ 0.857 0 0 –0.89 0.006 1.785
    Transfer Fe2B20$ \left| {1} \right\rangle $ 0 0.38 –0.87 0 0.001 1.919
    (B: θ = 90°, φ = 90°) $ \left| {41} \right\rangle $ 2.659 0.01 0.63 0 1.114 0.084
    CrossoverFeB20$ \left| {6} \right\rangle $ 1.022 0.94 0 0 1.291
    (B: θ = 90°, φ = 90°) $ \left| {7} \right\rangle $ 1.133 0 0 0 0
    Fe2B20$ \left| {37} \right\rangle $ 2.371 0 0 0 0 0
    (B: θ = 90°, φ = 90°)$ \left| {45} \right\rangle $ 2.784 0 –0.52 0 0.090 0.873
    下载: 导出CSV

    表 3  超快自旋动力学过程所需的激光参数, 其中 θφ为入射激光在球坐标系下的方位角, γ为入射激光振动方向和光平面的夹角, FWHM为激光脉冲的半高全宽

    Table 3.  Laser parameters for the achieved scenarios. Here, θ and φ denote the angles of the incidence in spherical coordinates, and γ is the angle between the polarization of the light and the optical plane. FWHM is the full width at half maximum of the laser pulse.

    ScenarioStructureInitial/Final
    state
    FidelityLaser parameters
    θ/(º)φ(º)γ/(º)FWHM
    /fs
    Amplitude
    /(atomic units)
    Energy
    /eV
    FlipFeB20$ \left| {4} \right\rangle \to \left| {6} \right\rangle $89.7%112.96.1338.9337.30.009970.299
    Fe2B20$ \left| {8} \right\rangle \to \left| {9} \right\rangle $93.5%156.4122.477.7466.20.006342.114
    TransferFe2B20$ \left| {1} \right\rangle \to \left| {41} \right\rangle $91.9%244.791.4225.392.30.007812.661
    CrossoverFeB20$ \left| {6} \right\rangle \to \left| {7} \right\rangle $77.9%61.0321.482.9318.50.007830.212
    Fe2B20$ \left| {37} \right\rangle \to \left| {45} \right\rangle $74.5%297.2356.1301.5352.00.003060.416
    下载: 导出CSV

    表 A1  FeB20 and Fe2B20团簇所计算能态在未考虑SOC和考虑SOC之后的能量值(单位: eV)

    Table A1.  Energy values of the calculated states of clusters FeB20 and Fe2B20 before and after the inclusion of SOC (in eV)

    FeB20 Fe2B20
    Before SOC After SOC Before SOC After SOC
    Singlet 1.131 (1 1A') 1.133 1.504 (1 1A') 1.489
    1.133 (2 1A') 1.134 1.850 (1 1A'') 1.857
    2.320 (1 1A'') 2.319 2.199 (2 1A') 2.203
    2.545 (SAC) 2.554 2.361 (SAC) 2.371
    2.676 (2 1A'') 2.677 2.587 (3 1A') 2.592
    2.676 (3 1A') 2.677 2.801 (2 1A'') 2.806
    3.130 (3 1A'') 3.132 2.843 (4 1A') 2.845
    3.636 (4 1A'') 3.638 2.996 (3 1A'') 3.002
    4.266 (5 1A'') 4.269 3.133 (5 1A') 3.136
    4.272 (4 1A') 4.272 3.429 (4 1A'') 3.434
    4.282 (5 1A') 4.285 3.632 (5 1A'') 3.637
    Triplet 0.000 (1 3A') 0.000 0.0005 0.001 0.000 (1 3A') 0.000 0.0007 0.002
    1.019 (2 3A') 1.021 1.021 1.022 0.508 (1 3A'') 0.511 0.513 0.515
    1.291 (3 3A') 1.271 1.271 1.294 0.851 (2 3A') 0.854 0.857 0.857
    1.293 (1 3A'') 1.295 1.313 1.317 1.545 (2 3A'') 1.548 1.551 1.570
    1.476 (2 3A'') 1.475 1.478 1.478 1.668 (3 3A') 1.673 1.673 1.673
    2.361 (3 3A'') 2.363 2.363 2.364 1.793 (4 3A') 1.797 1.797 1.797
    2.945 (4 3A'') 2.947 2.947 2.948 1.984 (5 3A') 1.989 1.989 1.989
    3.119 (5 3A'') 3.120 3.121 3.121 1.997 (3 3A'') 2.001 2.002 2.003
    3.462 (4 3A') 3.464 3.465 3.466 2.089 (6 3A') 2.093 2.094 2.094
    3.467 (6 3A'') 3.470 3.471 3.471 2.100 (4 3A'') 2.105 2.105 2.105
    3.471 (7 3A'') 3.473 3.473 3.474 2.112 (7 3A') 2.113 2.116 2.116
    3.743 (5 3A') 3.745 3.745 3.745 2.653 (8 3A') 2.658 2.658 2.659
    3.753 (8 3A'') 3.755 3.755 3.756 2.707 (5 3A'') 2.711 2.713 2.714
    3.990 (6 3A') 3.989 3.990 3.994 2.779 (9 3A') 2.784 2.784 2.784
    4.000 (7 3A') 4.003 4.008 4.008 2.783 (6 3A'') 2.787 2.788 2.788
    4.419 (8 3A') 4.421 4.421 4.421 2.934 (10 3A') 2.939 2.939 2.940
    4.435 (9 3A'') 4.436 4.436 4.438 2.943 (7 3A'') 2.948 2.949 2.952
    4.436 (9 3A') 4.438 4.440 4.440 3.144 (8 3A'') 3.150 3.151 3.152
    4.536 (10 3A') 4.528 4.528 4.539 3.301 (9 3A'') 3.305 3.306 3.306
    4.540 (10 3A'') 4.543 4.554 4.557 3.338 (10 3A'') 3.343 3.343 3.344
    下载: 导出CSV
  • [1]

    Bogani L, Wernsdorfer W 2008 Nat. Mater. 7 179Google Scholar

    [2]

    Khajetoorians A A, Heinrich A J 2016 Science 352 296Google Scholar

    [3]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [4]

    Prinz G A 1998 Science 282 1660Google Scholar

    [5]

    Bader S D, Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71Google Scholar

    [6]

    Dietl T 2005 J. Magn. Magn. Mater. 290-291 14Google Scholar

    [7]

    Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F 1988 Phys. Rev. Lett. 61 2472Google Scholar

    [8]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [9]

    Scholl A, Baumgarten L, Jacquemin R, Eberhardt W 1997 Phys. Rev. Lett. 79 5146Google Scholar

    [10]

    Pfau B, Schaffert S, Müller L, Gutt C, Al-shemmary. A, Büttner F, Delaunay R, Düsterer S, Flewett S, Frömter R, Geilhufe J, Guehrs E, Günther C M, Hawaldar R, Hille M, Jaouen N, Kobs A, Li K, Mohanty J, Redlin H, Schlotter W F, Stickler D, Treusch R, Vodungbo B, Kläui M, Oepen H P, Lüning J, Grübel G, Eisebitt S 2012 Nat. Commun. 3 1100Google Scholar

    [11]

    Koopmans B, Ruigrok J J M, Longa F D, de Jonge W J M 2005 Phys. Rev. Lett. 95 267207Google Scholar

    [12]

    Steiauf D, Fähnle M 2009 Phys. Rev. B 79 140401Google Scholar

    [13]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [14]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

    [15]

    Gómez-Abal R, Hübner W 2002 Phys. Rev. B 65 195114Google Scholar

    [16]

    Zhang Z Z, Cui B, Wang G Z, Ma B, Jin Q Y, Liu Y W 2010 Appl. Phys. Lett. 97 172508Google Scholar

    [17]

    Zhang W, Liu Q, Yuan Z, Xia K, He W, Zhan Q F, Zhang X Q, Cheng Z H 2019 Phys. Rev. B 100 104412Google Scholar

    [18]

    Lefkidis G, Reyes S A 2016 Phys. Rev. B 94 144433Google Scholar

    [19]

    李春, 杨帆, Lefkidis G, Hübner W 2011 物理学报 60 017802Google Scholar

    Li C, Yang F, Lefkidis G, Hübner W 2011 Acta Phys. Sin. 60 017802Google Scholar

    [20]

    Chaudhuri D, Xiang H P, Lefkidis G, Hübner W 2014 Phys. Rev. B 90 245113Google Scholar

    [21]

    Jin W, Li C, Lefkidis G, Hübner W 2014 Phys. Rev. B 89 024419Google Scholar

    [22]

    Chaudhuri D, Lefkidis G, Hübner W 2017 Phys. Rev. B 96 184413Google Scholar

    [23]

    Li C, Zhang S B, Jin W, Lefkidis G, Hübner W 2014 Phys. Rev. B 89 184404Google Scholar

    [24]

    Lefkidis G, Hübner W 2007 Phys. Rev. B 76 014418Google Scholar

    [25]

    Dong C D, Lefkidis G, Hübner W 2013 Phys. Rev. B 88 214421Google Scholar

    [26]

    Hübner W, Lefkidis G 2014 Phys. Rev. B 90 024401Google Scholar

    [27]

    Liu J, Li C, Jin W, Lefkidis G, Hübner W 2021 Phys. Rev. Lett. 126 037402Google Scholar

    [28]

    Li J H, Sun F, Du H L, Hong H L, Wang K H, Bian J 2019 Univ. Chem. Educ. 34 117Google Scholar

    [29]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. U. S. A. 102 961Google Scholar

    [30]

    An W, Bulusu S, Gao Y, Zeng X C 2006 J. Chem. Phys. 124 154310Google Scholar

    [31]

    Marques M A L, Botti S 2005 J. Chem. Phys. 123 014310Google Scholar

    [32]

    Tian J F, Xu Z C, Shen C M, Liu F, Xu N S, Gao H J 2010 Nanoscale 2 1375Google Scholar

    [33]

    刘立仁, 雷雪玲, 陈杭, 祝恒江 2009 物理学报 58 5355Google Scholar

    Liu L R, Lei X L, Chen H, Zhu H J 2009 Acta Phys. Sin. 58 5355Google Scholar

    [34]

    Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Edit. 46 8503Google Scholar

    [35]

    Li W L, Romanescu C, Jian T, Wang L S 2012 J. Am. Chem. Soc. 134 13228Google Scholar

    [36]

    Liu C S, Wang X F, Ye X J, Yan X H, Zeng Z 2014 J. Chem. Phys. 141 194306Google Scholar

    [37]

    Liang W Y, Das A, Dong X, Cui Z H 2018 Phys. Chem. Chem. Phys. 20 16202Google Scholar

    [38]

    Xu C, Cheng L J, Yang J L 2014 J. Chem. Phys. 141 124301Google Scholar

    [39]

    Tam N M, Pham H T, Duong L V, Pham-Ho, My P, Nguyen M T 2015 Phys. Chem. Chem. Phys. 17 3000Google Scholar

    [40]

    Ruan W, Xie A D, Wu D L, Luo W L, Yu X G 2014 Chin. Phys. B 23 033101Google Scholar

    [41]

    阮文, 余晓光, 谢安东, 伍冬兰, 罗文浪 2014 物理学报 63 243101Google Scholar

    Ruan W, Yu X G, Xie A D, Wu D L, Luo W L 2014 Acta Phys. Sin. 63 243101Google Scholar

    [42]

    雷雪玲, 祝恒江, 葛桂贤, 王先明, 罗有华 2008 物理学报 57 5491Google Scholar

    Lei X L, Zhu H J, Ge G X, Wang X M, Luo Y H 2008 Acta Phys. Sin. 57 5491Google Scholar

    [43]

    Popov I A, Jian T, Lopez G V, Boldyrev A I, Wang L S 2015 Nat. Commun. 6 8654Google Scholar

    [44]

    Penev E S, Bhowmick S, Sadrzadeh A, Yakobson B I 2012 Nano Lett. 12 2441Google Scholar

    [45]

    Li X Y, Li X X, Yang J L 2019 J. Phys. Chem. Lett. 10 4417Google Scholar

    [46]

    Liu J, Zhang Y M, Li C, Jin W, Lefkidis G, Hübner W 2020 Phys. Rev. B 102 024416Google Scholar

    [47]

    Hübner W, Kersten S, Lefkidis G 2009 Phys. Rev. B 79 184431Google Scholar

    [48]

    Li C, Jin W, Xiang H P, Lefkidis G, Hübner W 2011 Phys. Rev. B 84 054415Google Scholar

    [49]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian16 Revision B. 01 (Gaussian Inc., Wallingford, CT)

    [50]

    Jin W, Rupp F, Chevalier K, Wolf M M N, Colindres Rojas M, Lefkidis G, Krüger H J, Diller R, Hübner W 2012 Phys. Rev. Lett. 109 267209Google Scholar

    [51]

    Nakatsuji H 1979 Chem. Phys. Lett. 67 329Google Scholar

    [52]

    Koseki S, Schmidt M W, Gordon M S 1998 J. Phys. Chem. A 102 10430Google Scholar

    [53]

    Lefkidis G, Hübner W 2005 Phys. Rev. Lett. 95 077401Google Scholar

    [54]

    Cash J R, Karp A H 1990 ACM Trans. Math. Softwave 16 201Google Scholar

    [55]

    Hartenstein T, Li C, Lefkidis G, Hübner W 2008 J. Phys. D: Appl. Phys. 41 164006Google Scholar

    [56]

    Du H, Liu J, Zhang N, Chang J, Jin W, Li C, Lefkidis G, Hübner W 2019 Phys. Rev. B 99 134430Google Scholar

    [57]

    Zhang N, Du H, Chang J, Jin W, Li C, Lefkidis G, Hübner W 2018 Phys. Rev. B 98 104431Google Scholar

    [58]

    Wang P P, Qiu M Y, Lu X, Jin W, Li C, Lefkidis G, Hübner W 2020 Phys. Rev. B 101 104414Google Scholar

    [59]

    Hogue R W, Singh S, Brooker S 2018 Chem. Soc. Rev. 47 7303Google Scholar

    [60]

    Rupp F, Chevalier K, Graf M, Schmitz M, Kelm H, Grün A, Zimmer M, Gerhards M, van Wüllen C, Krüger H J, Diller R 2017 Chem. Eur. J. 23 2119Google Scholar

    [61]

    Her J L, Matsuda Y H, Nakano M, Niwa Y, Inada Y 2012 J. Appl. Phys. 111 053921Google Scholar

    [62]

    Létard J F, Guionneau P, Goux-Capes L 2004 Towards Spin Crossover Applications, in Spin Crossover in Transition Metal Compounds III, Topics in Current Chemistry (Vol. 235) (Berlin, Heidelberg: Springer) pp221−249

    [63]

    Bousseksou A, Molnár G, Salmon L, Nicolazzi W 2011 Chem. Soc. Rev. 40 3313Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华. 超快自旋动力学: 从飞秒磁学到阿秒磁学. 物理学报, 2024, 73(15): 157501. doi: 10.7498/aps.73.20240646
    [3] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [5] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [6] 范航, 何冠松, 杨志剑, 聂福德, 陈鹏万. 三氨基三硝基苯基高聚物粘结炸药热力学性质的理论计算研究. 物理学报, 2019, 68(10): 106201. doi: 10.7498/aps.68.20190075
    [7] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [8] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究. 物理学报, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [9] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [10] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究. 物理学报, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [11] 陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒. Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算. 物理学报, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [12] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [13] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [14] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究. 物理学报, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [15] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究. 物理学报, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [16] 忻晓桂, 陈香, 周晶晶, 施思齐. LiFePO4 晶格动力学性质的第一性原理研究. 物理学报, 2011, 60(2): 028201. doi: 10.7498/aps.60.028201
    [17] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [18] 李春, 杨帆, Georgios Lefkidis, Wolfgang Hübner. 磁性纳米结构中由激光引起的超快自旋动力学研究. 物理学报, 2011, 60(1): 017802. doi: 10.7498/aps.60.017802
    [19] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [20] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
计量
  • 文章访问数:  6048
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-10
  • 修回日期:  2021-02-08
  • 上网日期:  2021-06-11
  • 刊出日期:  2021-06-20

/

返回文章
返回