搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄膜与Helmholtz腔耦合结构低频带隙

陈鑫 姚宏 赵静波 张帅 贺子厚 蒋娟娜

引用本文:
Citation:

薄膜与Helmholtz腔耦合结构低频带隙

陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜

Low frequency band gaps of Helmholtz resonator coupled with membrane

Chen Xin, Yao Hong, Zhao Jing-Bo, Zhang Shuai, He Zi-Hou, Jiang Juan-Na
PDF
HTML
导出引用
  • 设计了一种含薄膜壁的Helmholtz型声子晶体, 该结构利用了空气和薄膜的耦合振动, 一方面将刚性壁转变为柔性壁, 降低了一阶振动时的等效刚度, 使第一带隙下限分别低于同参数下的普通Helmholtz型声子晶体和薄膜, 另一方面基于局域共振原理, 由于薄膜的出现和腔口空气通道长度的增加, 使得结构在低频范围内存在多个振动模态, 从而将原有一个带隙扩展为多个带隙. 将该结构带隙上下限分别等效为环形系统和串联系统, 用传递矩阵法和有限元法两种方法计算了其低频带隙范围, 两种方法结果吻合良好. 通过调整参数对带隙调控规律进行了进一步分析, 结果显示, 在低频范围内, 既可以通过改变与腔口空气通道或薄膜相关的参数, 在保证其中某些带隙变化不大的情况下, 单独调整其他带隙; 也可以通过调整内外腔体积, 对所有带隙进行调控.
    In this paper, a phononic crystal is designed using a Helmholtz resonator with a membrane wall, in which the coupled vibration of air and membrane is utilized. The structure of the Helmholtz resonator is a two-dimensional structure. On the basis of the square Helmholtz resonator, a " W”-type outlet is used as a cavity outlet to increase the air quality involved in resonance, and the cavity wall is replaced with a membrane with distribution mass to increase the number of resonance units. The finite element method is used to calculate the band gaps and transmission loss of sound below 1700 Hz. The results show that the starting frequency of the first band gap of the structure is further reduced. At the same time, it is lower than the starting frequency of ordinary Helmholtz structure and the natural frequency of membrane under the same conditions. Then, a new peak of transmission loss is obtained, and its value is greater than the original structure’s. And although the width of the first band gap is reduced, some new band gaps appear in the low-frequency range, so that the total band gap width is improved. By analyzing the vibration mode of the membrane and sound pressure distribution, it is found that the sum of the sound pressures of the outer cavity is zero at the starting frequencies of the band gaps, and the sound pressure of the inner and outer cavity are respectively positive and negative at the cut-off frequency. With the increase of frequency, the vibration mode of the membrane gradually turns from low-order to high-order, but no anti-symmetric-type mode participation is found at the starting and cut-off frequency. The components of the structure can be made equivalent to corresponding ones, respectively, i.e. air in the outlet is equivalent to uniform flexible rod, and the air in the inner and outer cavity are equivalent to a spring. So that the structure can be equivalent to a series system consisting of a rod, a spring and a membrane at starting frequency of the band gap, and a loop system consisting of a rod, two springs and a membrane at cut-off frequency. Thus, by the transfer matrix method and the Rayleigh-Ritz method considering the influence of tension and elastic modulus, it is possible to calculate the range of band gap which is extremely close to the result from the finite element method. Through the analysis of the formulas, it can be found that the new band gap is caused by the new vibration mode produced by the membrane or the air in the cavity outlet, and the lower starting frequency of the first band gap is due to the reduction of the equivalent extent of the system by the membrane. By adjusting the relevant parameters of the membrane and the cavity outlet respectively, it can be found that the band gaps of the structure correspond to the modes of different orders of the air in the cavity outlet and the membrane. In other words, the change of the natural frequency of a certain mode of air in the outlet or membrane only has a greater influence on the corresponding band gap but has less influence on other band gaps, also, the trends of change are the same, and the change values are very close to each other. But, changing the volume of the inner cavity and the outer cavity has a great influence on all the band gaps. Therefore, it is possible to adjust some band gaps through this method.
      通信作者: 赵静波, chjzjb@163.com
    • 基金项目: 国家自然科学基金(批准号: 11504429)资助的课题
      Corresponding author: Zhao Jing-Bo, chjzjb@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504429)
    [1]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar

    [2]

    王莎, 林书玉 2019 物理学报 68 024303Google Scholar

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 024303Google Scholar

    [3]

    张振方, 郁殿龙, 刘江伟, 温激鸿 2018 物理学报 67 074301Google Scholar

    Zhang Z F, Yu D L, Liu J W, Wen J H 2018 Acta Phys. Sin. 67 074301Google Scholar

    [4]

    廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬 2018 物理学报 67 214208Google Scholar

    Liao T, Sun X W, Song T, Tian J H, Kang T F, Sun W B 2018 Acta Phys. Sin. 67 214208Google Scholar

    [5]

    Li S B, Dou Y H, Chen T N, Wan Z G, Guan Z R 2018 Mod. Phys. Lett. B 32 1850221

    [6]

    Korozlu N, Kaya O A, Cicek A, Ulug B 2018 J. Acoust. Soc. Am. 143 756Google Scholar

    [7]

    Quan L, Ra Di Y, Sounas D L, Alù A 2018 Phys. Rev. Lett. 120 254301Google Scholar

    [8]

    Zhao L X, Zhou S X 2019 Sensors-Basel 19 788Google Scholar

    [9]

    Yuan M, Cao Z, Luo J, Pang Z 2018 AIP Adv. 8 85012Google Scholar

    [10]

    Wang Y, Zhu X, Zhang T S, Bano S, Pan H Y, Qi L F, Zhang Z T, Yuan Y P 2018 Appl. Energ. 230 52Google Scholar

    [11]

    Quan L, Qian F, Liu X Z, Gong X F, Johnson P A 2015 Phys. Rev. B 92 104105Google Scholar

    [12]

    Quan L, Zhong X, Liu X, Gong X, Johnson P A 2014 Nat. Commun. 5 3188Google Scholar

    [13]

    Hu X, Chan C T, Zi J 2005 Phys. Rev. E 71 55601Google Scholar

    [14]

    Chalmers L, Elford D P, Kusmartsev F V, Swallowe G M 2009 Int. J. Mod. Phys. B 23 4234Google Scholar

    [15]

    Guan D, Wu J H, Jing L, Gao N, Hou M 2015 Noise Control Eng. J. 63 20Google Scholar

    [16]

    Jiang J, Yao H, Du J, Zhao J 2016 AIP Adv. 6 115024Google Scholar

    [17]

    姜久龙, 姚宏, 杜军, 赵静波, 邓涛 2017 物理学报 66 064301Google Scholar

    Jiang J L, Yao H, Du J, Zhao J B, Deng T 2017 Acta Phys. Sin. 66 064301Google Scholar

    [18]

    刘敏, 侯志林, 傅秀军 2012 物理学报 61 104302Google Scholar

    Liu M, Hou Z L, Fu X J 2012 Acta Phys. Sin. 61 104302Google Scholar

    [19]

    包凯, 陈天宁, 王小鹏, 王放, 张振华 2016 西安交通大学学报 50 124Google Scholar

    Bao K, Chen T N, Wang X P, Wang F, Zhang Z H 2016 J. Xi’an Jiaotong Univ. 50 124Google Scholar

    [20]

    Liu C R, Wu J H, Chen X, Ma F Y 2019 J. Phys. D: Appl. Phys. 52 105302Google Scholar

    [21]

    Ang L Y L, Koh Y K, Lee H P 2017 Appl. Phys. Lett. 111 41903Google Scholar

    [22]

    Wang X, Zhao H, Luo X, Huang Z 2016 Appl. Phys. Lett. 108 41905Google Scholar

    [23]

    Langfeldt F, Gleine W, von Estorff O 2015 J. Sound Vib. 349 315Google Scholar

    [24]

    周榕, 吴卫国, 闻轶凡 2017 声学技术 36 297

    Zhou R, Wu W G, Wen Y F 2017 Technical Acoustics 36 297

    [25]

    Abbad A, Rabenorosoa K, Ouisse M, Atalla N, Park G 2017 Proc. SPIE 10164 101640P

    [26]

    Langfeldt F, von Estorff O 2016 Inter-Noise and Noise-Con Congress and Conference Proceedings 253 3413

    [27]

    Elayouch A, Addouche M, Herth E, Khelif A 2013 Appl. Phys. Lett. 103 83504Google Scholar

    [28]

    Liu C R, Wu J H, Lu K, Zhao Z T, Huang Z 2019 Appl. Acoust. 148 1Google Scholar

    [29]

    Zhu X, Chen Z, Jiao Y, Wang Y 2018 J.Vibr. Acoust. 140 31014Google Scholar

    [30]

    陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜 2019 物理学报 68 084302Google Scholar

    Chen X, Yao H, Zhao J B, Zhang S, He Z H, Jiang J N 2019 Acta Phys. Sin. 68 084302Google Scholar

    [31]

    芮筱亭, 贠来峰, 陆毓琪, 何斌, 王国平 2008 多体系统的传递矩阵法及其应用 (北京: 科学出版社) 第425页

    Rui X T, Yuan L F, Lu Y Q, He B, Wang G P 2008 Transfer Matrix Method of Multibody System and Its Applications (Beijing: Science Press) p425 (in Chinese)

    [32]

    倪振华 1989 振动力学 (西安: 西安交通大学出版社) 第410页

    Nie Z H 1989 Vibration Mechanics (Xi'an: Xi'an Jiaotong University Press) p410 (in Chinese)

  • 图 1  带薄膜壁的Helmholtz结构横截面

    Fig. 1.  Cross section of Helmholtz resonator structure with a membrane wall.

    图 2  带薄膜壁的Helmholtz结构 (a) 带隙图; (b) 隔声曲线

    Fig. 2.  Band diagram (a) and transmission spectrum (b) of the Helmholtz resonator structure with a membrane wall.

    图 3  普通Helmholtz结构的(a)带隙图和(b)隔声曲线

    Fig. 3.  Band diagram (a) and transmission spectrum (b) of the ordinary Helmholtz resonator structure.

    图 4  (a) 模态A (88.40 Hz)、(b) 模态B (119.06 Hz)、(c) 模态C (302.09 Hz)、(d) 模态D (533.03 Hz)、(e) 模态E (772.31 Hz)、(f) 模态F (891.44 Hz) 的薄膜振型和声场压力图

    Fig. 4.  Vibration mode of the membrane and sound pressure distribution diagrams of point A (88.40 Hz) (a), B (119.06 Hz) (b), C (302.09 Hz) (c), D (533.03 Hz) (d), E (772.31 Hz) (e), and F (891.44 Hz) (f).

    图 5  (a) 带隙下限系统示意图; (b) 带隙上限系统示意图

    Fig. 5.  (a) System corresponding to starting frequency of band gaps; (b) system corresponding to cut-off frequency of band gaps.

    图 6  l1 = 295 mm时(a) 第三带隙下限和(b) 第三带隙上限的声场压力图

    Fig. 6.  Sound pressure distribution diagrams at starting frequency (a) and cutoff frequency (b) of the 3th band gap when l1 = 295 mm.

    表 2  薄膜附加金属片长度l s对薄膜固有频率的影响

    Table 2.  Effect of the parameter l s on natural frequency of membrane.

    l s/10–3 m468101214
    1阶固有频率252.4237.9226.8218.2211.6206.6
    2阶固有频率751.3782.8794.0814.8843.4879.1
    下载: 导出CSV

    表 1  薄膜附加金属片长度l s对低频带隙的影响

    Table 1.  Effect of the parameter l s on low-frequency band gaps.

    ls/10–3 m第一带隙下限第一带隙上限第二带隙下限第二带隙上限第三带隙下限第三带隙上限
    FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%
    489.23.7121.44.4314.22.8557.70.6790.72.2900.31.6
    92.5126.7323.0561.2808.3914.7
    688.93.6120.14.2297.71.8526.8–0.8789.10.4905.20.8
    92.2125.1303.1522.8792.4912.2
    888.73.5118.93.9285.10.9508.3–2.1795.6–1.1916.1–0.5
    91.9123.5287.6497.5786.8912.0
    1088.63.4117.93.5275.6–0.1497.9–3.5815.9–3.7932.5–2.3
    91.6122.0275.4480.5786.0910.8
    1288.53.1117.23.0268.4–1.0492.6–4.8843.8–6.9953.9–5.2
    91.3120.7265.6469.1785.3904.4
    1488.52.8116.72.3262.9–2.0490.5–5.9878.5–11966.3–8.2
    91.0119.4257.6461.5779.9887.3
    下载: 导出CSV

    表 3  薄膜张力T对低频带隙的影响

    Table 3.  Effect of the parameter T on low-frequency band gaps.

    T/106 N·m–1第一带隙下限第一带隙上限第二带隙下限第二带隙上限第三带隙下限第三带隙上限
    FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%
    0.574.33.489.32.8259.20.7440.3–1.2574.10.1770.10.5
    76.891.8261.0434.9574.4774.3
    1.596.33.4143.14.6345.53.2589.60.2952.12.21035.11.7
    99.6149.7356.7591.0973.01053.1
    2.5103.32.9174.64.6415.04.2648.00.71217.42.81274.12.3
    106.4182.7432.6652.41251.01303.2
    3.5106.82.7196.44.4474.94.8691.41.11434.13.01478.62.5
    109.6205.0497.6698.81477.61516.1
    4.5108.82.5212.54.1528.25.1729.61.41621.63.21642.53.3
    111.5221.3555.2740.11673.41696.5
    10113.02.1257.83.0757.35.9907.92.71645.95.81741.83.1
    115.3265.6801.7932.81740.61796.2
    100116.21.8311.01.21654.15.21737.33.12270.89.02375.36.1
    118.3314.91740.41791.62475.72520.3
    下载: 导出CSV

    表 4  腔口空气通道长度l1对低频带隙的影响

    Table 4.  Effect of the parameter l1 on low-frequency band gaps.

    l1/mm第一带隙下限第一带隙上限第二带隙下限第二带隙上限第三带隙下限第三带隙上限
    FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%
    9988.44.4119.15.7302.13.4533.01.3772.33.4891.42.4
    92.3125.9312.5540.0798.6912.9
    14874.53.4101.55.1301.23.5513.31.1772.63.4873.72.4
    77.1106.7311.7519.1798.9894.4
    19766.02.989.94.7301.93.5500.01.1772.43.3836.01.9
    67.994.1312.5505.3798.2851.8
    24660.12.681.44.5303.23.5488.51.0697.61.2734.10.9
    61.785.1313.7493.3705.9740.6
    29555.82.575.04.3304.73.4475.70.9587.80.7637.50.7
    57.278.2315.2479.9591.9642.3
    34452.52.469.84.2306.33.4458.40.7507.50.6558.93.1
    53.772.7316.6461.5510.8576.4
    下载: 导出CSV

    表 5  内腔体积V2对低频带隙的影响

    Table 5.  Effect of the parameter V2 on low-frequency band gaps.

    V2/10–4 m3第一带隙下限第一带隙上限第二带隙下限第二带隙上限第三带隙下限第三带隙上限
    FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%FEM
    TMM
    误差/%
    7.07108.56.3120.55.8406.91.0566.21.0809.91.9953.11.2
    115.3127.6411.0571.8825.3964.2
    10.57103.34.8121.14.8361.41.6558.3–0.1796.51.9925.41.4
    108.3126.8367.2557.8811.4938.7
    14.0798.04.2121.04.4335.01.9550.0–0.1790.91.8913.11.4
    102.2126.4341.3549.4804.9925.8
    17.5793.33.9120.94.3317.72.1544.4–0.1788.31.6906.51.3
    96.9126.1324.4543.9801.1918.1
    19.3291.13.8120.84.3311.12.2542.3–0.1787.41.6904.11.2
    94.5126.0317.9541.8799.7915.3
    下载: 导出CSV
  • [1]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar

    [2]

    王莎, 林书玉 2019 物理学报 68 024303Google Scholar

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 024303Google Scholar

    [3]

    张振方, 郁殿龙, 刘江伟, 温激鸿 2018 物理学报 67 074301Google Scholar

    Zhang Z F, Yu D L, Liu J W, Wen J H 2018 Acta Phys. Sin. 67 074301Google Scholar

    [4]

    廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬 2018 物理学报 67 214208Google Scholar

    Liao T, Sun X W, Song T, Tian J H, Kang T F, Sun W B 2018 Acta Phys. Sin. 67 214208Google Scholar

    [5]

    Li S B, Dou Y H, Chen T N, Wan Z G, Guan Z R 2018 Mod. Phys. Lett. B 32 1850221

    [6]

    Korozlu N, Kaya O A, Cicek A, Ulug B 2018 J. Acoust. Soc. Am. 143 756Google Scholar

    [7]

    Quan L, Ra Di Y, Sounas D L, Alù A 2018 Phys. Rev. Lett. 120 254301Google Scholar

    [8]

    Zhao L X, Zhou S X 2019 Sensors-Basel 19 788Google Scholar

    [9]

    Yuan M, Cao Z, Luo J, Pang Z 2018 AIP Adv. 8 85012Google Scholar

    [10]

    Wang Y, Zhu X, Zhang T S, Bano S, Pan H Y, Qi L F, Zhang Z T, Yuan Y P 2018 Appl. Energ. 230 52Google Scholar

    [11]

    Quan L, Qian F, Liu X Z, Gong X F, Johnson P A 2015 Phys. Rev. B 92 104105Google Scholar

    [12]

    Quan L, Zhong X, Liu X, Gong X, Johnson P A 2014 Nat. Commun. 5 3188Google Scholar

    [13]

    Hu X, Chan C T, Zi J 2005 Phys. Rev. E 71 55601Google Scholar

    [14]

    Chalmers L, Elford D P, Kusmartsev F V, Swallowe G M 2009 Int. J. Mod. Phys. B 23 4234Google Scholar

    [15]

    Guan D, Wu J H, Jing L, Gao N, Hou M 2015 Noise Control Eng. J. 63 20Google Scholar

    [16]

    Jiang J, Yao H, Du J, Zhao J 2016 AIP Adv. 6 115024Google Scholar

    [17]

    姜久龙, 姚宏, 杜军, 赵静波, 邓涛 2017 物理学报 66 064301Google Scholar

    Jiang J L, Yao H, Du J, Zhao J B, Deng T 2017 Acta Phys. Sin. 66 064301Google Scholar

    [18]

    刘敏, 侯志林, 傅秀军 2012 物理学报 61 104302Google Scholar

    Liu M, Hou Z L, Fu X J 2012 Acta Phys. Sin. 61 104302Google Scholar

    [19]

    包凯, 陈天宁, 王小鹏, 王放, 张振华 2016 西安交通大学学报 50 124Google Scholar

    Bao K, Chen T N, Wang X P, Wang F, Zhang Z H 2016 J. Xi’an Jiaotong Univ. 50 124Google Scholar

    [20]

    Liu C R, Wu J H, Chen X, Ma F Y 2019 J. Phys. D: Appl. Phys. 52 105302Google Scholar

    [21]

    Ang L Y L, Koh Y K, Lee H P 2017 Appl. Phys. Lett. 111 41903Google Scholar

    [22]

    Wang X, Zhao H, Luo X, Huang Z 2016 Appl. Phys. Lett. 108 41905Google Scholar

    [23]

    Langfeldt F, Gleine W, von Estorff O 2015 J. Sound Vib. 349 315Google Scholar

    [24]

    周榕, 吴卫国, 闻轶凡 2017 声学技术 36 297

    Zhou R, Wu W G, Wen Y F 2017 Technical Acoustics 36 297

    [25]

    Abbad A, Rabenorosoa K, Ouisse M, Atalla N, Park G 2017 Proc. SPIE 10164 101640P

    [26]

    Langfeldt F, von Estorff O 2016 Inter-Noise and Noise-Con Congress and Conference Proceedings 253 3413

    [27]

    Elayouch A, Addouche M, Herth E, Khelif A 2013 Appl. Phys. Lett. 103 83504Google Scholar

    [28]

    Liu C R, Wu J H, Lu K, Zhao Z T, Huang Z 2019 Appl. Acoust. 148 1Google Scholar

    [29]

    Zhu X, Chen Z, Jiao Y, Wang Y 2018 J.Vibr. Acoust. 140 31014Google Scholar

    [30]

    陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜 2019 物理学报 68 084302Google Scholar

    Chen X, Yao H, Zhao J B, Zhang S, He Z H, Jiang J N 2019 Acta Phys. Sin. 68 084302Google Scholar

    [31]

    芮筱亭, 贠来峰, 陆毓琪, 何斌, 王国平 2008 多体系统的传递矩阵法及其应用 (北京: 科学出版社) 第425页

    Rui X T, Yuan L F, Lu Y Q, He B, Wang G P 2008 Transfer Matrix Method of Multibody System and Its Applications (Beijing: Science Press) p425 (in Chinese)

    [32]

    倪振华 1989 振动力学 (西安: 西安交通大学出版社) 第410页

    Nie Z H 1989 Vibration Mechanics (Xi'an: Xi'an Jiaotong University Press) p410 (in Chinese)

  • [1] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [2] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真. 物理学报, 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [3] 沈惠杰, 郁殿龙, 汤智胤, 苏永生, 李雁飞, 刘江伟. 暗声学超材料型充液管道的低频消声特性. 物理学报, 2019, 68(14): 144301. doi: 10.7498/aps.68.20190311
    [4] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [5] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. Helmholtz腔与弹性振子耦合结构带隙. 物理学报, 2019, 68(8): 084302. doi: 10.7498/aps.68.20182102
    [6] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [7] 姜久龙, 姚宏, 杜军, 赵静波, 邓涛. 双开口Helmholtz局域共振周期结构低频带隙特性研究. 物理学报, 2017, 66(6): 064301. doi: 10.7498/aps.66.064301
    [8] 高东宝, 刘选俊, 田章福, 周泽民, 曾新吾, 韩开锋. 一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究. 物理学报, 2017, 66(1): 014307. doi: 10.7498/aps.66.014307
    [9] 侯丽娜, 侯志林, 傅秀军. 局域共振型声子晶体中的缺陷态研究. 物理学报, 2014, 63(3): 034305. doi: 10.7498/aps.63.034305
    [10] 程聪, 吴福根, 张欣, 姚源卫. 基于局域共振单元实现声子晶体低频多通道滤波. 物理学报, 2014, 63(2): 024301. doi: 10.7498/aps.63.024301
    [11] 高东宝, 曾新吾, 周泽民, 田章福. 一维亥姆霍兹共振腔声子晶体中缺陷模式的实验研究. 物理学报, 2013, 62(9): 094304. doi: 10.7498/aps.62.094304
    [12] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究. 物理学报, 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [13] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [14] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [15] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [16] 钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用. 物理学报, 2006, 55(1): 275-280. doi: 10.7498/aps.55.275
    [17] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究. 物理学报, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [18] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [19] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [20] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法. 物理学报, 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
计量
  • 文章访问数:  8387
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 修回日期:  2019-06-24
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回