搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅超构表面上强烈增强的三次谐波

杨玖龙 元晴晨 陈润丰 方汉林 肖发俊 李俊韬 姜碧强 赵建林 甘雪涛

引用本文:
Citation:

硅超构表面上强烈增强的三次谐波

杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛

Enhanced third-harmonic generation in silicon metasurface

Yang Jiu-Long, Yuan Qing-Chen, Chen Run-Feng, Fang Han-Lin, Xiao Fa-Jun, Li Jun-Tao, Jiang Bi-Qiang, Zhao Jian-Lin, Gan Xue-Tao
PDF
HTML
导出引用
  • 利用超构表面结构实现硅介质内局域电磁场的极大增强, 进而实现强烈增强的三次谐波激发(THG). 该超构表面结构由L形的单晶硅共振子组成, 通过调节抽运波长与超构表面共振波长重合, 可以实现最高220倍的THG增强, THG的转化效率提升至~ 3 × 10–7. 数值模拟和THG信号的空间扫描结果表明, 场增强主要源于超构表面结构中心区域处的共振模式耦合效应. 此外, 实验结果表明该结构的共振模式具有明显的偏振选择性, 且THG信号同样为线偏振光, 消光比为15 dB.
    We report the enhanced third-harmonic generation (THG) from a silicon metasurface consisting of an array of L-shaped nanoresonators. The L-shaped nanoresonator is designed as a small cuboid with a notch cut from one corner. And 16 × 15 L-shaped nanoresonators are arranged into an array with a square lattice. In order to fabricate the structure, a 600-nm-thick silicon layer is first deposited on a 500-μm-thick sapphire substrate, which is then patterned into the metasurface structure by using electron beam lithography and inductively coupled plasma dry etching process. To evaluate the linear optical property of the fabricated metasurface, a continuous-wave narrow band laser with a tunable wavelength range of 1530−1560 nm is employed to measure the transmission and reflection spectrum. The measurement results show a Fano resonance at a wavelength of 1548 nm when the incident laser is linearly polarized along the long arm of the L-shaped nanoresonator. Pumping at the resonant wavelength, the metasurface shows significant polarization sensitivity for the transmitted light and the reflected light. To excite the THG signal from the metasurface, a femtosecond pulsed laser with a tunable wavelength range of 1540−1560 nm is then employed as the pump. Strong THG signal is observed when the laser wavelength is tuned on the resonant wavelength (1548 nm), indicating a conversion efficiency of ~ 3×10–7. By comparing the THG signals triggered on- and off-resonance, an enhancement factor of 220 is extracted, which is attributed to the field-enhancement of the Fano resonance. The resonance enhanced THG signal also has polarization-dependence with an extinction ratio of 15 dB. These experimental results are verified well by numerical simulations based on a finite-element technique, including the Fano resonance and the enhanced THG process. By combining the numerically calculated electrical field of the resonant mode and the calculation of nonlinear polarizations, the resonance enhanced THG as well as its polarization-dependence are confirmed numerically. The realized strongly enhanced THG from the silicon metasurface promises to extend their linear optical functionalities into nonlinear regime.
      通信作者: 姜碧强, bqjiang@nwpu.edu.cn ; 甘雪涛, xuetaogan@nwpu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0303800)、国家自然科学基金(批准号: 61775183, 11634010)、陕西省自然科学基础研究计划(批准号: 2017KJXX-12, 2018JM1058) 和中央高校基本科研业务费(批准号: 3102019JC008, 3102018jcc034)资助的课题
      Corresponding author: Jiang Bi-Qiang, bqjiang@nwpu.edu.cn ; Gan Xue-Tao, xuetaogan@nwpu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017 YFA0303800), the National Natural Science Foundation of China (Grant Nos. 61775183, 11634010), the Basic Research Plan of the Natural Science Research Project of Shaanxi Province, China (Grant Nos. 2017KJXX-12, 2018JM1058), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102019JC008, 3102018jcc034)
    [1]

    Priolo F, Gregorkiewicz T, Galli M, Krauss T F 2014 Nat. Nanotechnol. 9 19Google Scholar

    [2]

    Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J 2009 Nat. Photon. 3 216Google Scholar

    [3]

    Ji H, Pu M, Hu H, Galili M, Oxenlowe L K, Yvind K, Hvam J M, Jeppesen P 2011 J. Lightwave Technol. 29 426Google Scholar

    [4]

    Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725Google Scholar

    [5]

    Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M, Gaeta A L 2006 Nature 441 960Google Scholar

    [6]

    Chen S, Rahmani M, Li K F, Miroshnichenko A, Zentgraf T, Li G, Neshev D, Zhang S 2018 ACS Photonics 5 1671Google Scholar

    [7]

    Boyd R, Fischer G 2001 Nonlinear Optical Materials (Oxford: Elsevier) p6237

    [8]

    Jung Y, Tong L, Tanaudommongkon A, Cheng J X, Yang C 2009 Nano Lett. 9 2440Google Scholar

    [9]

    Wiecha P R, Arbouet A, Kallel H, Periwal P, Baron T, Paillard V 2015 Phys. Rev. B 91 121416Google Scholar

    [10]

    Soljačić M, Joannopoulos J D 2004 Nat. Mater. 3 211Google Scholar

    [11]

    Bravo-Abad J, Rodriguez A, Bermel P, Johnson S G, Joannopoulos J D, Soljačić M 2007 Opt. Express 15 16161Google Scholar

    [12]

    Martemyanov M G, Kim E M, Dolgova T V, Fedyanin A A, Aktsipetrov O A, Marowsky G 2004 Phys. Rev. B 70 073311Google Scholar

    [13]

    Campione S, Liu S, Basilio L I, Warne L K, Langston W L, Luk T S, Wendt J R, Reno J L, Keeler G A, Brener I, Sinclair M B 2016 ACS Photonics 3 2362Google Scholar

    [14]

    Yan J H, Liu P, Lin Z Y, Wang H, Chen H J, Wang C X, Yang G W 2015 Nat. Commun. 6 7042Google Scholar

    [15]

    Wang L, Kruk S, Koshelev K, Kravchenko I, Luther-Davies B, Kivshar Y 2018 Nano Lett. 18 3978Google Scholar

    [16]

    Markovich D, Baryshnikova K, Shalin A, Samusev A, Krasnok A, Belov P, Ginzburg P 2016 Sci. Rep. 6 22546Google Scholar

    [17]

    Albella P, Shibanuma T, Maier S A 2015 Sci. Rep. 5 18322

    [18]

    Yuan Q, Fang L, Fang H, Li J, Wang T, Jie W, Zhao J, Gan X 2019 arXiv: 1904.06027[physics.optics]

    [19]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [20]

    Staude I, Schilling J 2017 Nat. Photon. 11 274Google Scholar

    [21]

    Bar-David J, Levy U 2019 Nano Lett. 19 1044Google Scholar

    [22]

    Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D, Capasso F 2015 Nano Lett. 15 5358Google Scholar

    [23]

    West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar

    [24]

    Chong K E, Staude I, James A, Dominguez J, Liu S, Campione S, Subramania G S, Luk T S, Decker M, Neshev D N, Brener I, Kivshar Y S 2015 Nano Lett. 15 5369Google Scholar

    [25]

    Mie G 1908 Ann. Phys.-Berlin 330 377Google Scholar

    [26]

    Wynne J J 1969 Phys. Rev. 178 1295Google Scholar

    [27]

    Jha S S, Bloembergen N 1968 Phys. Rev. 171 891Google Scholar

    [28]

    Yang Z J, Jiang R, Zhuo X, Xie Y M, Wang J, Lin H Q 2017 Phys. Rep. 701 1Google Scholar

  • 图 1  (a)硅基超构表面中的三次谐波激发; (b)结构正面的扫描电子显微镜图像; (c)共振单元的尺寸示意图; (d)光路系统示意图

    Fig. 1.  (a) Schematic of THG from the silica-based metasurface; (b) a top-view scan electron microscope image of the metasuface; (c) the schematic diagram of the L-shaped resonators; (d) illustration of experimental set-up.

    图 2  (a)超构表面在1530−1560 nm范围内的反射和透射光谱(T, 透射谱; R, 反射谱); (b)抽运波长与共振波长(1548 nm)重合时产生的THG信号峰; (c) THG信号相对于抽运光的功率依赖性; (d) THG强度分布的空间扫描; (e)不同抽运波长下THG信号的光谱演化, 插图为对谱线进行归一化后的结果; (f)对(e)中所有THG信号谱线进行能量积分的结果

    Fig. 2.  (a) Reflection and transmission spectra of the metasurface in the wavelength range of 1530−1560 nm (T, transmission spectrum; R, reflection spectrum); (b) THG signal peak when the pump wavelength coincides with the resonant wavelength at 1548 nm; (c) power dependence of THG intensity; (d) spatial scanning of THG intensity distribution; (e) spectra of THG signals pumped with different wavelengths, and the inset shows the result of normalizing each line; (f) integral results for all THG spectra shown in panel (e).

    图 3  (a)左图为超构表面电场在x-y平面内分布情况的数值模拟, 右图为单共振单元横向的电场分量(右上)和纵向的磁场分量(右下); (b)样品各向异性透射谱的数值模拟; (c)透射、反射信号以及THG信号强度的数值计算结果

    Fig. 3.  (a) Numerical simulation of the distribution of electric field of the metasurface in the x-y plane; (b) numerical simulation of the anisotropic transmission spectra of the sample; (c) numerical simulation of reflection (R), transmission (T) spectra and intensity of THG signals.

    图 4  (a)方位示意图; (b)实验测量透射/反射信号的偏振依赖性; (c)实验测量THG信号强度对抽运光的偏振依赖性; (d) THG 信号的偏振检测

    Fig. 4.  (a) Orientation illustrated in the metasurface; (b) experimental measurement of polarization dependence of transmitted and reflected signals; (c) experimental measurement of the polarization dependence of THG signal intensity on pump light; (d) polarization detection of THG signals.

  • [1]

    Priolo F, Gregorkiewicz T, Galli M, Krauss T F 2014 Nat. Nanotechnol. 9 19Google Scholar

    [2]

    Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J 2009 Nat. Photon. 3 216Google Scholar

    [3]

    Ji H, Pu M, Hu H, Galili M, Oxenlowe L K, Yvind K, Hvam J M, Jeppesen P 2011 J. Lightwave Technol. 29 426Google Scholar

    [4]

    Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725Google Scholar

    [5]

    Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M, Gaeta A L 2006 Nature 441 960Google Scholar

    [6]

    Chen S, Rahmani M, Li K F, Miroshnichenko A, Zentgraf T, Li G, Neshev D, Zhang S 2018 ACS Photonics 5 1671Google Scholar

    [7]

    Boyd R, Fischer G 2001 Nonlinear Optical Materials (Oxford: Elsevier) p6237

    [8]

    Jung Y, Tong L, Tanaudommongkon A, Cheng J X, Yang C 2009 Nano Lett. 9 2440Google Scholar

    [9]

    Wiecha P R, Arbouet A, Kallel H, Periwal P, Baron T, Paillard V 2015 Phys. Rev. B 91 121416Google Scholar

    [10]

    Soljačić M, Joannopoulos J D 2004 Nat. Mater. 3 211Google Scholar

    [11]

    Bravo-Abad J, Rodriguez A, Bermel P, Johnson S G, Joannopoulos J D, Soljačić M 2007 Opt. Express 15 16161Google Scholar

    [12]

    Martemyanov M G, Kim E M, Dolgova T V, Fedyanin A A, Aktsipetrov O A, Marowsky G 2004 Phys. Rev. B 70 073311Google Scholar

    [13]

    Campione S, Liu S, Basilio L I, Warne L K, Langston W L, Luk T S, Wendt J R, Reno J L, Keeler G A, Brener I, Sinclair M B 2016 ACS Photonics 3 2362Google Scholar

    [14]

    Yan J H, Liu P, Lin Z Y, Wang H, Chen H J, Wang C X, Yang G W 2015 Nat. Commun. 6 7042Google Scholar

    [15]

    Wang L, Kruk S, Koshelev K, Kravchenko I, Luther-Davies B, Kivshar Y 2018 Nano Lett. 18 3978Google Scholar

    [16]

    Markovich D, Baryshnikova K, Shalin A, Samusev A, Krasnok A, Belov P, Ginzburg P 2016 Sci. Rep. 6 22546Google Scholar

    [17]

    Albella P, Shibanuma T, Maier S A 2015 Sci. Rep. 5 18322

    [18]

    Yuan Q, Fang L, Fang H, Li J, Wang T, Jie W, Zhao J, Gan X 2019 arXiv: 1904.06027[physics.optics]

    [19]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [20]

    Staude I, Schilling J 2017 Nat. Photon. 11 274Google Scholar

    [21]

    Bar-David J, Levy U 2019 Nano Lett. 19 1044Google Scholar

    [22]

    Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D, Capasso F 2015 Nano Lett. 15 5358Google Scholar

    [23]

    West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar

    [24]

    Chong K E, Staude I, James A, Dominguez J, Liu S, Campione S, Subramania G S, Luk T S, Decker M, Neshev D N, Brener I, Kivshar Y S 2015 Nano Lett. 15 5369Google Scholar

    [25]

    Mie G 1908 Ann. Phys.-Berlin 330 377Google Scholar

    [26]

    Wynne J J 1969 Phys. Rev. 178 1295Google Scholar

    [27]

    Jha S S, Bloembergen N 1968 Phys. Rev. 171 891Google Scholar

    [28]

    Yang Z J, Jiang R, Zhuo X, Xie Y M, Wang J, Lin H Q 2017 Phys. Rep. 701 1Google Scholar

  • [1] 张胜蓝, 田喜敏, 许军伟, 徐亚宁, 李亮, 刘杰龙. 基于超构表面多通大容量完美矢量涡旋光束的产生及调控研究. 物理学报, 2025, 74(6): . doi: 10.7498/aps.74.20241725
    [2] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器. 物理学报, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [4] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [5] 杜芊, 陈溢杭. 硅纳米颗粒阵列中准连续域束缚态诱导三次谐波增强效应. 物理学报, 2021, 70(15): 154206. doi: 10.7498/aps.70.20210332
    [6] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [7] 王美欧, 肖倩, 金霞, 曹燕燕, 徐亚东. 基于亚波长金属超构光栅的中红外大角度高效率回射器. 物理学报, 2020, 69(1): 014211. doi: 10.7498/aps.69.20191144
    [8] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [9] 黄光侨, 林机. 竞争非局域三次五次非线性介质中孤子的传输特性. 物理学报, 2017, 66(5): 054208. doi: 10.7498/aps.66.054208
    [10] 蒲明博, 王长涛, 王彦钦, 罗先刚. 衍射极限尺度下的亚波长电磁学. 物理学报, 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [11] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [12] 滕欢, 柴路, 王清月, 胡明列. 高非线性光子晶体光纤中优化产生宽带紫外三次谐波. 物理学报, 2017, 66(4): 044205. doi: 10.7498/aps.66.044205
    [13] 刘作业, 史彦超, 胡碧涛. 空气中等离子光栅诱导探测光丝三次谐波辐射放大的实验研究. 物理学报, 2014, 63(18): 184206. doi: 10.7498/aps.63.184206
    [14] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应. 物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [15] 李 昆, 徐妙华, 金 展, 刘运全, 王兆华, 令维军, 张 杰. 对超短脉冲强激光在大气通道中产生的三次谐波偏振特性及白光光谱调制特性的研究. 物理学报, 2007, 56(3): 1439-1442. doi: 10.7498/aps.56.1439
    [16] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率. 物理学报, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [17] 郝作强, 张 杰, 张 喆, 奚婷婷, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道的三次谐波辐射研究. 物理学报, 2005, 54(7): 3173-3177. doi: 10.7498/aps.54.3173
    [18] 喻胜, 李宏福, 谢仲怜, 罗勇. 8mm波段三次谐波复合腔回旋管的非线性分析. 物理学报, 2001, 50(10): 1979-1983. doi: 10.7498/aps.50.1979
    [19] 于志刚, 李列明, 孙鑫. MX络合物中电荷密度波和自旋密度波对三次谐波产生系数的影响. 物理学报, 1993, 42(9): 1515-1521. doi: 10.7498/aps.42.1515
    [20] 霍崇儒, C. C. WANG, J. L. BOMBACK, J. V. JAMES. 反射三次谐波产生与晶体对称性. 物理学报, 1987, 36(11): 1416-1426. doi: 10.7498/aps.36.1416
计量
  • 文章访问数:  10671
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-22
  • 修回日期:  2019-07-29
  • 刊出日期:  2019-11-05

/

返回文章
返回