搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于亚波长金属超构光栅的中红外大角度高效率回射器

王美欧 肖倩 金霞 曹燕燕 徐亚东

引用本文:
Citation:

基于亚波长金属超构光栅的中红外大角度高效率回射器

王美欧, 肖倩, 金霞, 曹燕燕, 徐亚东

Mid-infrared large-angle high-efficiency retroreflector based on subwavelenght metallic metagrating

Wang Mei-Ou, Xiao Qian, Jin Xia, Cao Yan-Yan, Xu Ya-Dong
PDF
HTML
导出引用
  • 近年来, 电磁超构光栅为操控波的传播提供了新的思路和材料基础. 本文设计并研究了一种结构简单且易实现的反射型金属超构光栅, 其一个大周期内只包含两个结构单元, 通过简单的结构设计即可实现双通道中红外光的回射功能. 数值和仿真模拟计算表明: 对于某个特定设计的回射角度, 该金属超构光栅具有极高的回射效率(> 98%); 进一步研究表明, 改变超构光栅的周期长度就能实现不同角度的回射功能, 并且在大角度下依然保持较高的回射效率. 因此该金属超构光栅具有高效率大角度双通道回射特性.
    How to effectively control the refraction, reflection, propagation and wavefront of dynamic waves or light has become one of hot research points in the field of optics. In the past few years, the concept of phase gradient metasurface has been proposed: it introduces a gradient of the phase discontinuity covering the entire angle 2π along the interface to provide an effective wave vector $\kappa $ and completely control the direction of outing wave. Therefore, the metasurface can possess many novel optical applications, such as holograms, metalenses, photonic spin Hall effect, etc. In this work, we design a simplified reflection-type optical metagrating. The results demonstrate that the metagrating can achive the function of two-channel retroreflection, that is, redirecting the incident wave back toward the source, with a nearly perfect conversion efficiency.The metagrating designed in this paper contains only two sub-cells with π reflection phase difference in period. The working wavelength (λ) of metagrating is fixed at 3 μm. The two sub-cells are filled with an impedance matching material (their material relative refractive indexes are n1 = 1 and n2 = 1.5 respectively and their thickness is d = 1.5 μm.).The period length range is 1.5 μm ≤ p ≤ 3 μm(considering reducing the reflection order). When the incident angle is ${\theta _{\rm{i}}}= \pm \arcsin [\lambda /(2p)]$, the absolute values of the incident angle and the reflected angle are equal, and then retroreflection occurs. When the wavelength is greater than the period ($\lambda \geqslant p$), the angle of retroreflection can be adjusted to any value ($\left| {{\theta _{\rm{i}}}} \right| \geqslant {\rm{3}}{{\rm{0}}^ \circ }$) by adjusting the period p. In this work, COMSOL MULTIPHYSICS software is used to simulate the retroreflection reflectivity and field pattern of the designed metagrating. The results verify the two-channel retroreflection property of the metagrating. In addition,as the angle of incidence changes from 30° to 60°, the efficiency of retroreflection at any incident angle can reach to more than 95%. When the incident angle is 75.4°, the metagrating still has an efficiency of 80% retroreflection. Therefore, the metagrating also achieves the function of high-efficiency retroreflection at a large-angle. Comparing with multiple sub-cells’ metasurface, the simplified metagrating with two sub-cells enables a similar function of retroreflection, but has many potential advantages, and can play an important role in high-efficiency sensing, imaging and communication.
      通信作者: 金霞, xjin@suda.edu.cn ; 曹燕燕, yycao@stu.suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974010)和江苏省高校自然科学研究基金(批准号: 16KJB140013)资助的课题
      Corresponding author: Jin Xia, xjin@suda.edu.cn ; Cao Yan-Yan, yycao@stu.suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974010) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJB140013)
    [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [3]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [4]

    Zhao Y, Liu X, Alù A 2014 J. Opt. 16 123001Google Scholar

    [5]

    Xu Y, Fu Y, Chen H 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [6]

    Shi H Y, Zhang A X, Chen J Z, Wang J F, Xia S, Xu Z 2016 Chin. Phys. B 25 078105Google Scholar

    [7]

    Zhao J, Yang X, Dai J Y, Cheng Q, Li X, Qi N H, Ke J C, Bai G D, Liu S, Jin S, Alù A, Cui T J 2018 Natl. Sci. Rev. 6 231

    [8]

    Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561Google Scholar

    [9]

    Ni X, Ishii S, Kildishev A V, Shalaev V M 2013 Light Sci. Appl 2 e72

    [10]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [11]

    Xu Y, Fu Y, Chen H 2015 Sci. Rep. 5 12219Google Scholar

    [12]

    Ra’di Y, Sounas D L, Alù A 2017 Phys. Rev. Lett. 119 067404Google Scholar

    [13]

    Chalabi H, Ra’di Y, Sounas D L, Alù A 2017 Phys. Rev. B 96 075432Google Scholar

    [14]

    Fu Y, Cao Y, Xu Y 2019 Appl. Phys. Lett. 114 053502Google Scholar

    [15]

    Qian E, Fu Y, Xu Y, Chen H 2016 Europhys. Lett. 114 34003Google Scholar

    [16]

    Ra’di Y, Alù A 2018 ACS Photonics 5 1779Google Scholar

    [17]

    Fu Y, Shen C, Cao Y, Gao L, Chen H, Chan C T, Cummer S A, Xu Y 2019 Nat. Commun. 10 2326Google Scholar

    [18]

    Ma Y, Ong C K, Tyc T, Leonhardt U 2009 Nat. Mater. 8 639Google Scholar

    [19]

    Jia Y, Wang J, Li Y, Pang Y, Yang J, Fan Y, Qu S 2017 AIP Adv. 7 105315Google Scholar

    [20]

    Yan L, Zhu W, Karim M F, Cai H, Gu A Y, Shen Z, Chong P H J, Kwong D L, Qiu C W, Liu A Q 2018 Adv. Mater. 30 e1802721Google Scholar

    [21]

    Lipuma D, Meric S, Gillard R 2013 Electron. Lett. 49 2

    [22]

    Zentgraf T, Liu Y, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151Google Scholar

    [23]

    Nakagawa K, Sanada A 2017 ICMIM 978-1-5090-4354-5

    [24]

    Jiang W X, Bao D, Cui T J 2016 J. Opt. 18 044022Google Scholar

    [25]

    Fu Y, Li J, Xie Y, Shen C, Xu Y, Chen H, Cummer S A 2018 Phys. Rev. Mater. 2 105202Google Scholar

    [26]

    Song G, Cheng Q, Cui T J, Jing Y 2018 Phys. Rev. Mater. 2 065201Google Scholar

    [27]

    Shen C, Díaz-Rubio A, Li J, Cummer S A 2018 Appl. Phys. Lett. 112 183503Google Scholar

    [28]

    Shen C, Cummer S A 2018 Phys. Rev. Appl. 9 054009Google Scholar

    [29]

    Cao Y, Fu Y, Zhou Q, Ou X, Gao L, Chen H, Xu Y 2019 Phys. Rev. Appl. 12 024006Google Scholar

    [30]

    Zhang Z, Chu F, Guo Z, Fan J, Li G, Cheng W 2019 J. Lightwave Technol. 37 2820Google Scholar

  • 图 1  超构光栅的结构示意图 (a)逆向反射超构光栅的示意图, 其中红色和绿色箭头均表示回射, 蓝色箭头表示镜面反射; (b)超构光栅的结构单元示意图; (c)超构光栅入射和反射的等频图

    Fig. 1.  The structute of the metagrating: (a) The schematic of the retroreflection metagrating, wherein red and green arrows indicate retroreflection and blue arrows indicate specular reflection; (b) the diagram of metagrating with two sub-cells; (c) the iso-frequency contours of the incident wave and reflection wave for the metagrating.

    图 2  设计的回射角为$ \pm {\rm{3}}{{\rm{0}}^ \circ }$时, 超构光栅的不同级次的反射效率以及高斯波入射到超构光栅的总磁场图 (a)超构光栅不同级次的反射效率随入射角度变化曲线; (b)高斯波入射到超构光栅, 双通道回射的总磁场图

    Fig. 2.  The reflection efficiency of different orders and the total magnetic field pattern, while the designed retroreflection angle is $ \pm {\rm{3}}{{\rm{0}}^ \circ }$: (a) The reflection efficiency of different orders vary with incident angle; (b) the total magnetic field pattern of the two-channel retroreflector.

    图 3  设计的回射角为$ \pm {\rm{6}}{{\rm{0}}^ \circ }$时, 超构光栅的不同级次的反射效率以及高斯波入射到超构光栅的总磁场图 (a)超构光栅不同级次的反射效率随入射角度变化曲线; (b)高斯波入射到超构光栅, 双通道回射的总磁场图

    Fig. 3.  The reflection efficiency of different orders and the total magnetic field pattern, while the designed retroreflection angle is $ \pm 6{{\rm{0}}^ \circ }$: (a) The reflection efficiency of different orders vary with incident angle; (b) the total magnetic field pattern of the two-channel retroreflector.

    图 4  逆向反射的效率和工作角度随周期长度的变化规律. 随$p$改变过程中, 金属槽的占空比和填充介质保持不变

    Fig. 4.  The incident angle of retroreflection and retroreflectivity corresponding to different period lengths $p$. With the change of $p$, the duty cycle and filling medium of the metal slot remain unchanged.

  • [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [3]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [4]

    Zhao Y, Liu X, Alù A 2014 J. Opt. 16 123001Google Scholar

    [5]

    Xu Y, Fu Y, Chen H 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [6]

    Shi H Y, Zhang A X, Chen J Z, Wang J F, Xia S, Xu Z 2016 Chin. Phys. B 25 078105Google Scholar

    [7]

    Zhao J, Yang X, Dai J Y, Cheng Q, Li X, Qi N H, Ke J C, Bai G D, Liu S, Jin S, Alù A, Cui T J 2018 Natl. Sci. Rev. 6 231

    [8]

    Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561Google Scholar

    [9]

    Ni X, Ishii S, Kildishev A V, Shalaev V M 2013 Light Sci. Appl 2 e72

    [10]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [11]

    Xu Y, Fu Y, Chen H 2015 Sci. Rep. 5 12219Google Scholar

    [12]

    Ra’di Y, Sounas D L, Alù A 2017 Phys. Rev. Lett. 119 067404Google Scholar

    [13]

    Chalabi H, Ra’di Y, Sounas D L, Alù A 2017 Phys. Rev. B 96 075432Google Scholar

    [14]

    Fu Y, Cao Y, Xu Y 2019 Appl. Phys. Lett. 114 053502Google Scholar

    [15]

    Qian E, Fu Y, Xu Y, Chen H 2016 Europhys. Lett. 114 34003Google Scholar

    [16]

    Ra’di Y, Alù A 2018 ACS Photonics 5 1779Google Scholar

    [17]

    Fu Y, Shen C, Cao Y, Gao L, Chen H, Chan C T, Cummer S A, Xu Y 2019 Nat. Commun. 10 2326Google Scholar

    [18]

    Ma Y, Ong C K, Tyc T, Leonhardt U 2009 Nat. Mater. 8 639Google Scholar

    [19]

    Jia Y, Wang J, Li Y, Pang Y, Yang J, Fan Y, Qu S 2017 AIP Adv. 7 105315Google Scholar

    [20]

    Yan L, Zhu W, Karim M F, Cai H, Gu A Y, Shen Z, Chong P H J, Kwong D L, Qiu C W, Liu A Q 2018 Adv. Mater. 30 e1802721Google Scholar

    [21]

    Lipuma D, Meric S, Gillard R 2013 Electron. Lett. 49 2

    [22]

    Zentgraf T, Liu Y, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151Google Scholar

    [23]

    Nakagawa K, Sanada A 2017 ICMIM 978-1-5090-4354-5

    [24]

    Jiang W X, Bao D, Cui T J 2016 J. Opt. 18 044022Google Scholar

    [25]

    Fu Y, Li J, Xie Y, Shen C, Xu Y, Chen H, Cummer S A 2018 Phys. Rev. Mater. 2 105202Google Scholar

    [26]

    Song G, Cheng Q, Cui T J, Jing Y 2018 Phys. Rev. Mater. 2 065201Google Scholar

    [27]

    Shen C, Díaz-Rubio A, Li J, Cummer S A 2018 Appl. Phys. Lett. 112 183503Google Scholar

    [28]

    Shen C, Cummer S A 2018 Phys. Rev. Appl. 9 054009Google Scholar

    [29]

    Cao Y, Fu Y, Zhou Q, Ou X, Gao L, Chen H, Xu Y 2019 Phys. Rev. Appl. 12 024006Google Scholar

    [30]

    Zhang Z, Chu F, Guo Z, Fan J, Li G, Cheng W 2019 J. Lightwave Technol. 37 2820Google Scholar

  • [1] 刘凯越, 李腾耀, 郑娜娥, 田志富, 蔡通, 王彦朝, 曹超华. 基于迁移学习的共形超构表面散射场高效智能计算方法. 物理学报, 2024, 73(23): 234101. doi: 10.7498/aps.73.20241160
    [2] 李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉. 基于共享孔径技术的低RCS电磁超构表面天线设计. 物理学报, 2024, 73(12): 124101. doi: 10.7498/aps.73.20240142
    [3] 赖镇鑫, 张也, 仲帆, 王强, 肖彦玲, 祝世宁, 刘辉. 基于合成维度拓扑外尔点的波长选择热辐射超构表面. 物理学报, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [4] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器. 物理学报, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [5] 左一武, 田晶, 杨清, 胡晓, 江阳. 一种基于大角度倾斜光纤光栅包层模的低频声传感方案. 物理学报, 2023, 72(12): 124304. doi: 10.7498/aps.72.20230067
    [6] 高越, 余博丞, 郭瑞, 曹燕燕, 徐亚东. 基于相位梯度超构光栅的光学超构笼子. 物理学报, 2023, 72(2): 024209. doi: 10.7498/aps.72.20221696
    [7] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [8] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列. 物理学报, 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [9] 王明照, 王少杰, 许河秀. 基于剪纸方法的一种可重构线极化转换空间序构超表面. 物理学报, 2021, 70(15): 154101. doi: 10.7498/aps.70.20210188
    [10] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [11] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军. 编码超构表面实现双波束独立可重构. 物理学报, 2021, 70(17): 178102. doi: 10.7498/aps.70.20210344
    [12] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [13] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射. 物理学报, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [14] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [15] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [16] 杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛. 硅超构表面上强烈增强的三次谐波. 物理学报, 2019, 68(21): 214207. doi: 10.7498/aps.68.20190789
    [17] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚. 超构天线:原理、器件与应用. 物理学报, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [18] 蒲明博, 王长涛, 王彦钦, 罗先刚. 衍射极限尺度下的亚波长电磁学. 物理学报, 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [19] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [20] 刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉. 宽入射角度偏振不敏感高效异常反射梯度超表面. 物理学报, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
计量
  • 文章访问数:  9258
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-26
  • 修回日期:  2019-10-03
  • 上网日期:  2019-12-07
  • 刊出日期:  2020-01-05

/

返回文章
返回