搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隔板对流系统的热流特性及热量输入与传递特性

林泽鹏 徐圣卓 包芸

引用本文:
Citation:

隔板对流系统的热流特性及热量输入与传递特性

林泽鹏, 徐圣卓, 包芸

Characteristics of heat flow as well as process of heat conduction and transport in partitioned thermal convection

Lin Ze-Peng, XU Sheng-Zhuo, Bao Yun
PDF
HTML
导出引用
  • 采用DNS方法对隔板对流装置进行模拟计算, 研究系统中热流特性以及热量输入与传递特性. 讨论了热流的纵向和横向输运特性, 在此基础上对传热通道和狭缝区域的热通量以及对应底板外界输入热通量进行了定量化分析. 研究结果表明, 通道中低温流体向下冲击底板而后转入水平运动, 流入狭缝区域并不断被加热, 只进行水平的热量输运. 流出狭缝后的高温流体在传热通道中汇聚形成向上喷流, 进行热量传递. 水平热量输运的区域对应的底板外界输入的热通量很大, 占总输入热通量的92%, 狭缝区域底板外界输入热通量占总量的64%, 纵向热量传递区域对应底板外界输入热通量很小. 不同几何参数隔板对流系统都具有增强传热效果, 狭缝高度较小时对应的增强效果较强. 隔板数n = 11及狭缝高度d = 0.01时系统传热Nu数值最大, 是无隔板时的3倍以上.
    How to improve the heat transfer efficiency of the system is always a hot issue in thermal convection research field. It is found that when the partitions are added at equal distances to the classical physical model -- Rayleigh-Bénard convection system and gaps are left between the horizontal plates and partitions, the heat transfer efficiency of the system increases significantly with the number of partitions increasing. The heat transfer efficiency can reach up to 3.1 times that of the non-partition device with the specific geometric parameters. In this paper, the Direct Numerical Simulation (DNS) method is used to simulate the partitioned convection system. The mechanism of the heat transfer enhancement of the system is analyzed by studying the characteristics of the heat flow as well as the heat conduction and transport in the system. After the flow in partitioned convection system is fully developed, the fluid in each channel moves vertically in alternating direction and the upward(downward) channel has a higher(lower) temperature than the average temperature of the cell. Due to the symmetry of the system, only the bottom region of the low temperature channel, the bottom region of the high temperature channel and the gap region connecting these two channels are selected for research. By discussing the lateral and longitudinal transport processes of heat flow in the above three regions, the heat flux in the channels and gap areas of the system are studied by quantitative analysis. The results show that the low-temperature fluid in the channel impacts on the bottom plate and then moves into the gap area; the fluid is continuously heated by the bottom plate and flows out of gap area with high temperature. Finally, the fluid converges in the heat transfer channel and forms a longitudinal jet. The external input heat flux of the area that has only horizontal heat transport is large, accounting for 92% of the total heat flux which is obtained from the bottom plate. The heat flux of gap area accounts for 64% of the total heat flux, but the external input heat flux of the area that has only longitudinal heat transport is smaller. The convection system with different geometric parameters has the effect of enhancing heat transfer efficiency, and enhancement capability of the system is stronger when the height of gaps is smaller. When the number of partitions n = 11 and the height of gap d = 0.01, the value of the global Nu number is largest, Nu = 82, which is more than three times that of the system without partitions.
      通信作者: 包芸, stsby@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11772362)资助的课题
      Corresponding author: Bao Yun, stsby@mail.sysu.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant No.11772362)
    [1]

    Lappa M 2005 Cryst. Res. Technol. 40 531Google Scholar

    [2]

    Bodenschatz E, Pesch W, Ahlers G 2000 Annu. Rev. Fluid Mech. 32 709Google Scholar

    [3]

    Ahlers G, Grossmann S, Lohse D 2009 Rev. Mod. Phys. 81 503Google Scholar

    [4]

    Grossmann S, Lohse D 2000 J. Fluid Mech. 407 27Google Scholar

    [5]

    Grossmann S, Lohse D 2001 Phys. Rev. Lett. 86 3316Google Scholar

    [6]

    Shishkina O, Horn S, Wagner S, Ching E S C 2015 Phys. Rev. Lett. 114 114302Google Scholar

    [7]

    Weiss S, He X, Ahlers G, Bodenschatz E, Shishkina O 2018 J. Fluid Mech. 851 374Google Scholar

    [8]

    Zhao J, Cai W, Jiang Y 2019 Int. J. Heat Mass Transfer 129 599Google Scholar

    [9]

    Urban P, Hanzelka P, Králík T, Macek M, Musilová V, Skrbek L 2019 Phys. Rev. E 99 011101Google Scholar

    [10]

    Zhong J Q, Stevens R J, Clercx H J, Verzicco R, Lohse D, Ahlers G 2009 Phys. Rev. Lett. 102 044502Google Scholar

    [11]

    Stevens R J, Clercx H J, Lohse D 2013 Eur. J. Mech. Fluids 40 41Google Scholar

    [12]

    Liu Y, Ecke R E 1997 Phys. Rev. Lett. 79 2257Google Scholar

    [13]

    Kunnen R P J, Clercx H J H, Geurts B J 2006 Phys. Rev. E 74 056306Google Scholar

    [14]

    Kunnen R P J, Clercx H J H, Geurts B J 2008 Europhys. Lett. 84 24001Google Scholar

    [15]

    Du Y B, Tong P 1998 Phys. Rev. Lett. 81 987Google Scholar

    [16]

    Stringano G, Pascazio G, Verzicco R 2006 J. Fluid Mech. 557 307Google Scholar

    [17]

    Xu F, Patterson J C, Lei C 2009 Int. J. Heat Mass Transfer 52 620Google Scholar

    [18]

    Bao Y, Chen J, Liu B F, She Z S, Zhang J, Zhou Q 2015 J. Fluid Mech. 784 R5

    [19]

    包芸, 林泽鹏, 丁广裕 2017 计算机辅助工程 26 57

    Bao Y, Lin Z P, Ding G Y 2017 Comput. Aided Eng. 26 57

    [20]

    林泽鹏, 包芸 2018 中国科学: 物理学 力学 天文学 48 054702

    Lin Z P, Bao Y 2018 Sci. Sin. Phys. Mech. Astron. 48 054702

    [21]

    林泽鹏, 包芸 2018 中国科学: 物理学 力学 天文学 48 104702

    Lin Z P, Bao Y 2018 Sci. Sin. Phys. Mech. Astron. 48 104702

    [22]

    林泽鹏, 徐圣卓, 包芸 2019 水动力学研究与进展(A辑) 34 193Google Scholar

    Lin Z P, Xu S Z, Bao Y 2019 Chin. J. Hydrodynam. 34 193Google Scholar

    [23]

    包芸, 林泽鹏, 何鹏 2019 中国科学: 物理学 力学 天文学 49 044701

    Bao Y, Lin Z P, He P 2019 Sci. Sin. Phys. Mech. Astron. 49 044701

    [24]

    Lin Z P, Bao Y 2019 Chin. Phys. B 28 094701Google Scholar

  • 图 1  对流系统中的温度场和流线图

    Fig. 1.  Temperature field and streamline of partitioned convection system

    图 2  隔板对流系统中不同传热通道的热通量

    Fig. 2.  The heat flux of different heat transfer channels in partitioned convection system.

    图 3  隔板对流系统局部区域纵向热流分布特性

    Fig. 3.  An enlarged portion of the vertical heat flow field in partitioned convection system, the arrows represent the direction of the flow.

    图 4  隔板对流系统局部区域横向热流分布特性

    Fig. 4.  An enlarged portion of the horizontal heat flow field in partitioned convection system.

    图 5  系统局部区域热流热通量变化及底板传热特性定量表示

    Fig. 5.  Change of heat flux and heat flow in partial area of the system and quantitative representation of the heat transfer on the bottom plate.

    图 6  狭缝高度d = 0.015时隔板数n = 9 (a), n = 11 (b)及d = 0.01时隔板数n = 9 (c), n = 11 (d)的局部温度场和局部传热大小

    Fig. 6.  Partial temperature field and magnitude of local heat flux under different number of partitions n = 9 (a) and n = 11 (b) when the height of gap is d = 0.015 and n = 9 (c) and n = 11 (d) when the height of gap is d = 0.01

    图 7  不同狭缝高度下传热Nu数与Nud/Nu随隔板数的变化, 红色线表示无隔板时系统的传热

    Fig. 7.  Nu and Nud/Nu with the change of the partition number n under different height of gaps, the horizontal red dashed line represents the system without partitions.

  • [1]

    Lappa M 2005 Cryst. Res. Technol. 40 531Google Scholar

    [2]

    Bodenschatz E, Pesch W, Ahlers G 2000 Annu. Rev. Fluid Mech. 32 709Google Scholar

    [3]

    Ahlers G, Grossmann S, Lohse D 2009 Rev. Mod. Phys. 81 503Google Scholar

    [4]

    Grossmann S, Lohse D 2000 J. Fluid Mech. 407 27Google Scholar

    [5]

    Grossmann S, Lohse D 2001 Phys. Rev. Lett. 86 3316Google Scholar

    [6]

    Shishkina O, Horn S, Wagner S, Ching E S C 2015 Phys. Rev. Lett. 114 114302Google Scholar

    [7]

    Weiss S, He X, Ahlers G, Bodenschatz E, Shishkina O 2018 J. Fluid Mech. 851 374Google Scholar

    [8]

    Zhao J, Cai W, Jiang Y 2019 Int. J. Heat Mass Transfer 129 599Google Scholar

    [9]

    Urban P, Hanzelka P, Králík T, Macek M, Musilová V, Skrbek L 2019 Phys. Rev. E 99 011101Google Scholar

    [10]

    Zhong J Q, Stevens R J, Clercx H J, Verzicco R, Lohse D, Ahlers G 2009 Phys. Rev. Lett. 102 044502Google Scholar

    [11]

    Stevens R J, Clercx H J, Lohse D 2013 Eur. J. Mech. Fluids 40 41Google Scholar

    [12]

    Liu Y, Ecke R E 1997 Phys. Rev. Lett. 79 2257Google Scholar

    [13]

    Kunnen R P J, Clercx H J H, Geurts B J 2006 Phys. Rev. E 74 056306Google Scholar

    [14]

    Kunnen R P J, Clercx H J H, Geurts B J 2008 Europhys. Lett. 84 24001Google Scholar

    [15]

    Du Y B, Tong P 1998 Phys. Rev. Lett. 81 987Google Scholar

    [16]

    Stringano G, Pascazio G, Verzicco R 2006 J. Fluid Mech. 557 307Google Scholar

    [17]

    Xu F, Patterson J C, Lei C 2009 Int. J. Heat Mass Transfer 52 620Google Scholar

    [18]

    Bao Y, Chen J, Liu B F, She Z S, Zhang J, Zhou Q 2015 J. Fluid Mech. 784 R5

    [19]

    包芸, 林泽鹏, 丁广裕 2017 计算机辅助工程 26 57

    Bao Y, Lin Z P, Ding G Y 2017 Comput. Aided Eng. 26 57

    [20]

    林泽鹏, 包芸 2018 中国科学: 物理学 力学 天文学 48 054702

    Lin Z P, Bao Y 2018 Sci. Sin. Phys. Mech. Astron. 48 054702

    [21]

    林泽鹏, 包芸 2018 中国科学: 物理学 力学 天文学 48 104702

    Lin Z P, Bao Y 2018 Sci. Sin. Phys. Mech. Astron. 48 104702

    [22]

    林泽鹏, 徐圣卓, 包芸 2019 水动力学研究与进展(A辑) 34 193Google Scholar

    Lin Z P, Xu S Z, Bao Y 2019 Chin. J. Hydrodynam. 34 193Google Scholar

    [23]

    包芸, 林泽鹏, 何鹏 2019 中国科学: 物理学 力学 天文学 49 044701

    Bao Y, Lin Z P, He P 2019 Sci. Sin. Phys. Mech. Astron. 49 044701

    [24]

    Lin Z P, Bao Y 2019 Chin. Phys. B 28 094701Google Scholar

  • [1] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟. 物理学报, 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [2] 王子, 任捷. 周期驱动系统的非平衡热输运与热力学几何. 物理学报, 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [3] 张恩浩, 蔡洪波, 杜报, 田建民, 张文帅, 康洞国, 朱少平. 激光聚变黑腔中等离子体的热流研究. 物理学报, 2020, 69(3): 035204. doi: 10.7498/aps.69.20191423
    [4] 刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星. 纳米光学辐射传热: 从热辐射增强理论到辐射制冷应用. 物理学报, 2020, 69(3): 036501. doi: 10.7498/aps.69.20191906
    [5] 郑来运, 赵秉新, 杨建青. 弱Soret效应混合流体对流系统的分岔与非线性演化. 物理学报, 2020, 69(7): 074701. doi: 10.7498/aps.69.20191836
    [6] 包芸, 何建超, 高振源. 二维湍流热对流羽流运动路径对传热特性的影响. 物理学报, 2019, 68(16): 164701. doi: 10.7498/aps.68.20190323
    [7] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [8] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [9] 何宗旭, 严微微, 张凯, 杨向龙, 魏义坤. 底部局部加热多孔介质自然对流传热的格子Boltzmann模拟. 物理学报, 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [10] 程雪涛, 梁新刚. 熵产最小化理论在传热和热功转换优化中的应用探讨. 物理学报, 2016, 65(18): 180503. doi: 10.7498/aps.65.180503
    [11] 黄伟超, 刘丁, 焦尚彬, 张妮. 直拉法晶体生长过程非稳态流体热流耦合. 物理学报, 2015, 64(20): 208102. doi: 10.7498/aps.64.208102
    [12] 谭再上, 吴小蒙, 范仲勇, 丁士进. 热退火对等离子体增强化学气相沉积SiCOH薄膜结构与性能的影响. 物理学报, 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [13] 黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟. 黑腔冷冻靶传热与自然对流的数值模拟研究. 物理学报, 2015, 64(21): 215201. doi: 10.7498/aps.64.215201
    [14] 范文萍, 蒋晓芸. 带有分数阶热流条件的时间分数阶热波方程及其参数估计问题. 物理学报, 2014, 63(14): 140202. doi: 10.7498/aps.63.140202
    [15] 高秀云, 郑志刚. 一维均匀Morse晶格体系的热流棘齿效应. 物理学报, 2011, 60(4): 044401. doi: 10.7498/aps.60.044401
    [16] 李雪莲, 张志东, 王红艳, 熊祖洪, 张中月. 应用平行隔板增强纳米球表面电场. 物理学报, 2011, 60(4): 047807. doi: 10.7498/aps.60.047807
    [17] 姜泽辉, 张峰, 郭波, 赵海发, 郑瑞华. 受振颗粒“毛细”系统中的对流与有序化. 物理学报, 2010, 59(8): 5581-5587. doi: 10.7498/aps.59.5581
    [18] 张立杰, 李 磊, 沈永平. 基于多时间尺度分析的青藏铁路沿线土壤热流研究. 物理学报, 2005, 54(4): 1958-1964. doi: 10.7498/aps.54.1958
    [19] 张鹏, 王如竹, 村上正秀. 超流氦浴中的热波传热研究. 物理学报, 2002, 51(6): 1350-1354. doi: 10.7498/aps.51.1350
    [20] 李华兵, 孔令江, 刘慕仁, 何云. 研究热流体的13速格子Bhatnagar-Gross-Krook模型. 物理学报, 2000, 49(3): 392-397. doi: 10.7498/aps.49.392
计量
  • 文章访问数:  6924
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-05
  • 修回日期:  2019-09-06
  • 上网日期:  2019-12-13
  • 刊出日期:  2020-01-05

/

返回文章
返回