搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维均匀Morse晶格体系的热流棘齿效应

高秀云 郑志刚

引用本文:
Citation:

一维均匀Morse晶格体系的热流棘齿效应

高秀云, 郑志刚

Ratcheting thermal conduction in one-dimensional homogeneous Morse lattice systems

Gao Xiu-Yun, Zheng Zhi-Gang
PDF
导出引用
  • 本文系统研究了系统两端无平均温差时一维均匀Morse晶格中的热流棘齿效应. Morse晶格的两端分别与两个热浴相接触, 其中一端热浴温度周期调制,另一端热浴温度保持不变, 两端热浴温度长时平均相等. 数值结果表明, 当对一端热浴温度进行周期调制时, 系统中便会有稳定的定向热流产生. 通过改变调制频率和强度, 可以控制热流的大小及方向. 在合适的频率范围内, 可观察到一种非常有趣的现象——非定态负热导现象, 即系统中产生的定向热流逆着系统温度梯度方向由低温端流向高温端. 通过热波动力学分析(分析热流及温度分
    The ratchet effect in heat conductions of one-dimensional Morse lattices is studied when the system is located between two averagely isothermal reserviors, of which one keeps the temperature constant and the other is periodically modulated in temperature,and their temperatures averaged over a long time are equal to each other. Unidirectional heat current can be observed when one of the heat baths is periodically modulated in temperature. The efficiency and the direction of heat conduction can be rectified and controlled by adjusting the frequency and the amplitude of the modulation. An interesting non-stationary negative thermal conductivity, i.e., a reversed heat flow against the temperature gradient, is found in an appropriate region of frequency of the modulation. A heat wave scheme in revealing the spatiotemporal behavior of the heat conduction is proposed to study the this phenomenon. The influence of the parameters of the Morse lattice on the directional heat current is investigated, and so this provides theoretical support for practical applications.
    • 基金项目: 国家自然科学基金(批准号:11075016, 10875011),国家重点基础研究发展计划(批准号:2007CB814805)资助的课题.
    [1]

    Lepri S, Livi R, Politi A 1997 Phys. Rev. Lett. 78 1896

    [2]

    Hu B, Li B, Zhao H 1998 Phys. Rev. E 57 2992

    [3]

    Prosen T, Campbell D K 2000 Phys. Rev. Lett. 84 2857

    [4]

    Dhar A 2001 Phys. Rev. Lett. 86 3554

    [5]

    Garrido P L, Hurtado P I, Nadrowski B 2001 Phys. Rev. Lett. 86 5486

    [6]

    Grassberger P, Nadler W, Yang L 2002 Phys. Rev. Lett. 89 180601

    [7]

    Li B, Wang L, Hu B 2002 Phys. Rev. Lett. 88 223901

    [8]

    Lepri S, Livi R, Politi A 2003 Phys. Rep. 377 1

    [9]

    Li B, Wang J 2003 Phys. Rev. Lett. 91 044301

    [10]

    Wang L, Li B 2008 Phys. World 21 27

    [11]

    Terraneo M, Peyrard M, Casati G 2002 Phys. Rev. Lett. 88 094302

    [12]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [13]

    Hu B, Yang L, Zhang Y 2006 Phys. Rev. Lett. 97 124302

    [14]

    Wang J, Zheng Z G 2010 Phys. Rev. E 81 011114

    [15]

    Wang J, Zheng Z G 2010 Acta Phys. Sin. 59 476(in Chinese) [王 军、郑志刚 2010 物理学报 59 476]

    [16]

    Li B, Wang L, Casati G 2006 Appl. Phys. Lett. 88 143501

    [17]

    Wang L, Li B 2007 Phys. Rev. Lett. 99 177208

    [18]

    Wang L, Li B 2008 Phys. Rev. Lett. 101 267203

    [19]

    Chang C W, Okawa D, Garcia H, Majumdar A, Zettl A 2006 Science 314 1121

    [20]

    Kobayaashi W, Teraoka Y, Terasaki I 2009 Appl. Phys. Lett. 95 171905

    [21]

    Chang C W, Okawa D, Garcia H, Majumdar A, Zettl A 2007 Phys. Rev. Lett. 99 045901

    [22]

    Reimann P, Bartussek R, Hussler, Hnggi P 1996 Phys. Lett. A 215 26

    [23]

    Astumian R D Hnggi P 2002 Phys. Today 55 (11) 33

    [24]

    Reimann P, Hnggi P 2002 Appl. Phys. A 75 169

    [25]

    Reimann P 2002 Phys. Rep. 57 361

    [26]

    Hnggi P, Marchesoni F, Nori F 2005 Ann. Phys. (Leipzig) 14 51

    [27]

    Hnggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387

    [28]

    Segal D, Nitzan A, Hnggi P 2003 J. Chem. Phys. 119 030103(6804)

    [29]

    Van den Broeck C, Kawai R 2006 Phys. Rev. Lett. 96 210601

    [30]

    Segal D, Nitzan A 2006 Phys. Rev. E 73 026109

    [31]

    Marathe R, Jayannavar A M and Dhar A 2007 Phys. Rev. E 75 030103(R)

    [32]

    Van den Broeck M, Van den Broeck C 2008 Phys. Rev. Lett. 100 130601

    [33]

    Segal D 2008 Phys. Rev. Lett. 101 260601

    [34]

    Li N, Hnggi P, Li B 2008 Europhys. Lett. 84 40009

    [35]

    Li N, Zhan F, Hnggi P, Li B 2009 Phys. Rev. E 6 011125

    [36]

    Ren J, Li B 2010 Phys. Rev. E 81 021111

    [37]

    Larsen P V, Christiansen P L, Bang O, Archilla J F R, Gaididei Yu B 2004 Phys. Rev. E 69 026603

    [38]

    Kalosakas G, Ngai K L, Flach S 2005 Phys. Rev. E 71 061901

    [39]

    Lü B B, Deng Y P, Tian Q 2010 Chin. Phys. B 19 026302

    [40]

    Haile J M 1992 Molecular dynamics simulation: elementary methods John Wiley and Sons, Inc. New York, NY, USA

    [41]

    Zheng Z G Hu G, Hu B 2001 Phys. Rev. Lett. 86 2273

    [42]

    Zheng Z G Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

  • [1]

    Lepri S, Livi R, Politi A 1997 Phys. Rev. Lett. 78 1896

    [2]

    Hu B, Li B, Zhao H 1998 Phys. Rev. E 57 2992

    [3]

    Prosen T, Campbell D K 2000 Phys. Rev. Lett. 84 2857

    [4]

    Dhar A 2001 Phys. Rev. Lett. 86 3554

    [5]

    Garrido P L, Hurtado P I, Nadrowski B 2001 Phys. Rev. Lett. 86 5486

    [6]

    Grassberger P, Nadler W, Yang L 2002 Phys. Rev. Lett. 89 180601

    [7]

    Li B, Wang L, Hu B 2002 Phys. Rev. Lett. 88 223901

    [8]

    Lepri S, Livi R, Politi A 2003 Phys. Rep. 377 1

    [9]

    Li B, Wang J 2003 Phys. Rev. Lett. 91 044301

    [10]

    Wang L, Li B 2008 Phys. World 21 27

    [11]

    Terraneo M, Peyrard M, Casati G 2002 Phys. Rev. Lett. 88 094302

    [12]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [13]

    Hu B, Yang L, Zhang Y 2006 Phys. Rev. Lett. 97 124302

    [14]

    Wang J, Zheng Z G 2010 Phys. Rev. E 81 011114

    [15]

    Wang J, Zheng Z G 2010 Acta Phys. Sin. 59 476(in Chinese) [王 军、郑志刚 2010 物理学报 59 476]

    [16]

    Li B, Wang L, Casati G 2006 Appl. Phys. Lett. 88 143501

    [17]

    Wang L, Li B 2007 Phys. Rev. Lett. 99 177208

    [18]

    Wang L, Li B 2008 Phys. Rev. Lett. 101 267203

    [19]

    Chang C W, Okawa D, Garcia H, Majumdar A, Zettl A 2006 Science 314 1121

    [20]

    Kobayaashi W, Teraoka Y, Terasaki I 2009 Appl. Phys. Lett. 95 171905

    [21]

    Chang C W, Okawa D, Garcia H, Majumdar A, Zettl A 2007 Phys. Rev. Lett. 99 045901

    [22]

    Reimann P, Bartussek R, Hussler, Hnggi P 1996 Phys. Lett. A 215 26

    [23]

    Astumian R D Hnggi P 2002 Phys. Today 55 (11) 33

    [24]

    Reimann P, Hnggi P 2002 Appl. Phys. A 75 169

    [25]

    Reimann P 2002 Phys. Rep. 57 361

    [26]

    Hnggi P, Marchesoni F, Nori F 2005 Ann. Phys. (Leipzig) 14 51

    [27]

    Hnggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387

    [28]

    Segal D, Nitzan A, Hnggi P 2003 J. Chem. Phys. 119 030103(6804)

    [29]

    Van den Broeck C, Kawai R 2006 Phys. Rev. Lett. 96 210601

    [30]

    Segal D, Nitzan A 2006 Phys. Rev. E 73 026109

    [31]

    Marathe R, Jayannavar A M and Dhar A 2007 Phys. Rev. E 75 030103(R)

    [32]

    Van den Broeck M, Van den Broeck C 2008 Phys. Rev. Lett. 100 130601

    [33]

    Segal D 2008 Phys. Rev. Lett. 101 260601

    [34]

    Li N, Hnggi P, Li B 2008 Europhys. Lett. 84 40009

    [35]

    Li N, Zhan F, Hnggi P, Li B 2009 Phys. Rev. E 6 011125

    [36]

    Ren J, Li B 2010 Phys. Rev. E 81 021111

    [37]

    Larsen P V, Christiansen P L, Bang O, Archilla J F R, Gaididei Yu B 2004 Phys. Rev. E 69 026603

    [38]

    Kalosakas G, Ngai K L, Flach S 2005 Phys. Rev. E 71 061901

    [39]

    Lü B B, Deng Y P, Tian Q 2010 Chin. Phys. B 19 026302

    [40]

    Haile J M 1992 Molecular dynamics simulation: elementary methods John Wiley and Sons, Inc. New York, NY, USA

    [41]

    Zheng Z G Hu G, Hu B 2001 Phys. Rev. Lett. 86 2273

    [42]

    Zheng Z G Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

  • [1] 李冀, 陈亮, 冯芒. 基于离子阱中离子晶体的热传导的研究进展. 物理学报, 2024, 73(3): 033701. doi: 10.7498/aps.73.20231719
    [2] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [3] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [4] 曹义刚, 付萌萌, 杨喜昶, 李登峰, 王晓霞. 热传导对横截面不同的直管道中Kelvin-Helmholtz不稳定性的影响. 物理学报, 2022, 71(9): 094701. doi: 10.7498/aps.71.20211155
    [5] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究. 物理学报, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [6] 刘英光, 任国梁, 郝将帅, 张静文, 薛新强. 含有倾斜界面硅/锗超晶格的导热性能. 物理学报, 2021, 70(11): 113101. doi: 10.7498/aps.70.20201807
    [7] 刘英光, 郝将帅, 任国梁, 张静文. 不同周期结构硅锗超晶格导热性能研究. 物理学报, 2021, 70(7): 073101. doi: 10.7498/aps.70.20201789
    [8] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [9] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊(Jun Wang), 邹 宇, 付宝勤(Baoqin Fu). 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211434
    [10] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [11] 刘英光, 张士兵, 韩中合, 赵豫晋. 纳晶铜晶粒尺寸对热导率的影响. 物理学报, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [12] 李柱松, 朱泰山. 超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用. 物理学报, 2016, 65(11): 116802. doi: 10.7498/aps.65.116802
    [13] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [14] 敖宏瑞, 陈漪, 董明, 姜洪源. 基于多物理场的TFC磁头热传导机理及其影响因素仿真研究. 物理学报, 2014, 63(3): 034401. doi: 10.7498/aps.63.034401
    [15] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [16] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [17] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算. 物理学报, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [18] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [19] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [20] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
计量
  • 文章访问数:  8590
  • PDF下载量:  673
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-16
  • 修回日期:  2010-09-03
  • 刊出日期:  2011-02-05

/

返回文章
返回