搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于简单结构光纤的紫外波段三次谐波转换研究

黄宇强 陈漫晶 江秀娟

引用本文:
Citation:

基于简单结构光纤的紫外波段三次谐波转换研究

黄宇强, 陈漫晶, 江秀娟

Third-harmonic generation in ultraviolet band with simply-structured optical fibers

HUANG Yuqiang, CHEN Manjing, JIANG Xiujuan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 全光纤频率转换技术具有重要的科学和现实意义,设计兼备机械性能和转换效率的特种光纤,并降低其制备难度,是该技术实用化面临的关键挑战。本文设计了具有简单结构的高数值孔径常规单包层光纤(conventional single-cladding fiber,简记为CSCF)、微纳光纤(microfiber,简记为MF)及W型双包层光纤(W-type double-cladding fiber,简记为WDCF),并通过理论分析和数值模拟比较了它们从红外到紫外波段的三次谐波转换特性。文中采用1064 nm泵浦波长作设计,谐波输出波长为355 nm。研究结果表明,CSCF和WDCF均具有固态包层,且纤芯直径可大于2 μm,机械性能良好;MF光纤可以实现的转换效率最高,但光纤结构脆弱,机械性能较差,且对制备精度要求严苛。WDCF融合了CSCF和MF的优势,单段光纤的转换效率接近2%,四段级联后约为16%,纤芯直径误差宽容度为±3 nm,分别是CSCF的3倍和MF的10倍,制备难度较低,为紫外波段的全光纤三次谐波转换提供了一种具有实际可行性的选择方案。
    Ultraviolet fiber lasers are highly desired in different fields like lithography, laser processing, optical communications, optical storage, biomedicine, etc. On the other hand, all-fiber frequency conversion technology is of great significance in scientific and practical aspects, as it provides an alternative to the current solutions based on nonlinear crystals. The development of special optical fibers with both suitable mechanical performance and conversion efficiency, and reducing the difficulty of their preparation, are the key challenges in bringing this novel technology into practical application. In this paper, we design three step-index optical fibers of simple structure, namely, a conventional single-cladding fiber (CSCF) with high numerical aperture, a microfiber (MF) and a W-type double-cladding fiber (WDCF), and study the third-harmonic generation in ultraviolet band with them respectively. The fundamental (pump) wavelength used in this work is 1064 nm and the third harmonic is at 355 nm.
    In order to achieve good transmission in the ultraviolet band, the core of all three optical fibers are designed to be made of pure silica glass, and the core diameters are determined according to the phase matching condition for the fundamental wave and the third harmonic, by solving the eigenvalue equations. The cladding of CSCF is fluorine-doped silica glass, and the cladding of MF is air; for WDCF, the inner and outer claddings are fluorine-doped silica glass and fluoroplastics, respectively. Both CSCF and WDCF have solid cladding, and their core diameters can be greater than 2 μm, so they have adequate mechanical properties. In comparison, due to the air cladding and thin core the diameter of which has to be less than 1 μm for phase matching, the MF is fragile in structure and thus its mechanical performance is rather poor.
    The conversion efficiency from these three fibers is investigated in detail, by solving numerically the coupled mode equations for the pump and the third harmonic with the Runge-Kutta method. The effect of random fiber roughness (i.e. core diameter fluctuation) and enhancement in conversion efficiency by cascading the fibers are also analyzed. The results show that the conversion in MF is the most efficient, which gives efficiency of 2% with a single MF segment 5 mm in length and more than 20% when the MFs are cascaded; however, MF requires strict fabrication accuracy, and the tolerance of core diameter is only ±0.3 nm. CSCF has the lowest conversion efficiency, which is 0.1% for a single segment 50 mm long and in the level of about 1% after cascading, and the tolerance of core diameter is ±1 nm. The conversion efficiency of WDCF is between those of CSCF and MF, nearly 2% with a 50 mm-long segment and about 16% when four such segments are cascaded; WDCF bears core diameter tolerance of ±3 nm, which is 3 times that of CSCF and 10 times that of MF.
    Therefore, the W-type double-cladding fiber WDCF actually integrates the advantages of conventional single-cladding fiber CSCF and microfiber MF, showing both satisfactory mechanical performance and conversion efficiency, as well as reduced fabrication difficulty, which provides a promising solution for all-fiber third-harmonic generation in the ultraviolet band.
  • [1]

    Zhou P, Leng J, Xiao H, Ma P, Xu J, Liu W, Yao T, Zhang H, Huang L, Pan Z 2021Chin. J. Lasers 48 2000001(in Chinese)[周朴,冷进勇,肖虎,马鹏飞,许将明,刘伟,姚天甫,张汉伟,黄良金,潘志勇2021中国激光482000001]

    [2]

    Lü X, Peng Y, Wang W, Zhao Y, Zhu X, Leng Y 2021High Power Laser Sci. 9 03000e38

    [3]

    Fu Q, Hanrahan N, Xu L, Lane S, Lin D, Jung Y, Mahajan S, Richardson D J 2021Opt. Express 29 42485

    [4]

    Bencheikh K, Richard S, Mélin G, Krabshuis G, Gooijer F, Levenson J 2012Opt. Lett. 37 289

    [5]

    Cheng T, Gao W, Liao M, Duan Z, Deng D, Matsumoto M, Misumi T, Suzuki T, Ohishi Y 2014Opt. Lett. 39 1005

    [6]

    Gabriagues J 1983Opt. Lett. 8 183

    [7]

    Grubsky V, Savchenko A 2005Opt. Express 13 6798

    [8]

    Efimov A, Taylor A, Omenetto F, Knight J, Wadsworth W, Russell P 2003Opt. Express 11 2567

    [9]

    Teng H, Chai L, Wang Q, Hu M 2017Acta Phys. Sin. 66 044205(in Chinese)[滕欢,柴路,王清月,胡明列2017物理学报66 044205]

    [10]

    Boivin M, El-Amraoui M, Ledemi Y, Morency S, Vallée R, Messaddeq Y 2014Opt. Mater. Express 4 1740

    [11]

    Snyder A W, Love J D 1983Optical Waveguide Theory(New York:Chapman and Hall) pp248-254

    [12]

    Brunet C, Bélanger P A, Rusch L A 2016J. Lightwave Technol. 34 3094

    [13]

    Tsao C 1992Optical Fibre Waveguide Analysis (New York:Oxford University Press) pp298-369

    [14]

    Kong M, Shi B 2006Fiber Integrated Opt. 25 305

    [15]

    Jiang X, Zhang D, Lee T, Brambilla G 2018Opt. Lett. 43 2728

    [16]

    Jiang X, Chen Z, Lee T, Brambilla G 2020 Opt. Lett. 45 3272

    [17]

    Malitson I H 1965J. Opt. Soc. Am. 55 1205

    [18]

    Tan C Z 1998J. Non-Cryst. Solids 223 158

    [19]

    Lee T, Jung Y, Codemard C, Ding M, Broderick N, Brambilla G 2012Opt. Express 20 8503

    [20]

    Refractive index database, https://refractiveindex.info/

    [21]

    Agrawal G P 2019Nonlinear Fiber Optics(London:Academic) pp476-477

    [22]

    Jiang X, Lee T, Chen M, Sun Q, He J, Brambilla G 2019Opt. Lett. 44 4191

  • [1] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, doi: 10.7498/aps.72.20222405
    [2] 王浩, 曹珊珊, 苏俊豪, 徐海涛, 王震, 郑加金, 韦玮. 基于双包层光纤布拉格光栅传感器的锂电池组温度场监控. 物理学报, doi: 10.7498/aps.71.20212302
    [3] 滕欢, 柴路, 王清月, 胡明列. 高非线性光子晶体光纤中优化产生宽带紫外三次谐波. 物理学报, doi: 10.7498/aps.66.044205
    [4] 付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红. 基于包层模谐振的三包层石英特种光纤温度传感特性研究. 物理学报, doi: 10.7498/aps.65.024211
    [5] 赵楠, 陈瑰, 王一礴, 彭景刚, 李进延. 双包层大模场面积保偏掺镱光子晶体光纤研究. 物理学报, doi: 10.7498/aps.63.024202
    [6] 邢颍滨, 叶宝圆, 蒋作文, 戴能利, 李进延. 高效率掺Tm3+双包层光纤及光纤激光器的研制. 物理学报, doi: 10.7498/aps.63.014209
    [7] 王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良. 碳纳米管锁模双包层光纤激光器的实验研究. 物理学报, doi: 10.7498/aps.62.024209
    [8] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, doi: 10.7498/aps.62.044210
    [9] 朱亚东, 肖虎, 王小林, 马阎星, 周朴. 利用全光纤结构Michelson腔实现两路高功率双包层光纤激光器相干合成. 物理学报, doi: 10.7498/aps.61.054210
    [10] 延凤平, 刘鹏, 陶沛琳, 李琦, 彭万敬, 冯亭, 谭思宇. 双包层稀土掺杂光纤抽运吸收特性的分析. 物理学报, doi: 10.7498/aps.61.164203
    [11] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, doi: 10.7498/aps.61.154210
    [12] 王岩山, 蒋作文, 栾怀训, 张泽学, 彭景刚, 杨旅云, 李进延, 戴能利. 双包层掺Bi光纤的制备及其光谱特性研究. 物理学报, doi: 10.7498/aps.61.084215
    [13] 季来林, 朱宝强, 詹廷宇, 戴亚平, 朱检, 马伟新, 林尊琪. 大口径高通量三倍频研究. 物理学报, doi: 10.7498/aps.60.094210
    [14] 崔艳玲, 侯蓝田. 一种新型混合双包层光子晶体光纤的色散特性研究. 物理学报, doi: 10.7498/aps.59.2571
    [15] 韩伟涛, 侯蓝田, 耿鹏程. 双包层多芯光子晶体光纤自相干合成的数值分析与实验. 物理学报, doi: 10.7498/aps.59.7091
    [16] 刘洋, 程勇, 许立新, 郑睿, 王小兵, 王会升, 卢常勇, 孙斌. 两路双包层光纤激光器互注入锁相实验研究. 物理学报, doi: 10.7498/aps.58.3929
    [17] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, doi: 10.7498/aps.57.5045
    [18] 赵宏明, 楼祺洪, 周 军, 董景星, 魏运荣, 王之江. 不同腔结构下的声光调Q双包层光纤激光器特性研究. 物理学报, doi: 10.7498/aps.57.3525
    [19] 杨义胜, 郑万国, 韩 伟, 车雅良, 谭吉春, 向 勇, 贾怀庭. 宽带三倍频混频过程的群速匹配关系. 物理学报, doi: 10.7498/aps.56.6468
    [20] 付圣贵, 范万德, 张 强, 王 志, 李丽君, 张春书, 袁树忠, 董孝义. 光纤光栅选频掺Yb3+双包层光纤激光器. 物理学报, doi: 10.7498/aps.53.4262
计量
  • 文章访问数:  30
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-24

/

返回文章
返回