搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnS修饰对ZnO纳米棒:P3HT复合薄膜I-V性质的影响

王丽师 徐建萍 石少波 张晓松 任志瑞 葛林 李岚

引用本文:
Citation:

ZnS修饰对ZnO纳米棒:P3HT复合薄膜I-V性质的影响

王丽师, 徐建萍, 石少波, 张晓松, 任志瑞, 葛林, 李岚

Influence of ZnS modification on the I-V performance of ZnO nanorods:P3HT composite films

Wang Li-Shi, Xu Jian-Ping, Shi Shao-Bo, Zhang Xiao-Song, Ren Zhi-Rui, Ge Lin, Li Lan
PDF
导出引用
  • 本文通过化学浴沉积法获得了直径约为50 nm, 长度约为250 nm的ZnO纳米棒阵列, 引入纳米ZnS对ZnO纳米棒进行表面修饰, 分别制备得到了具有ITO (indium tin oxides)/ZnO/Poly-(3-hexylthiophene) (P3HT)/Au和ITO/ZnO@ZnS/P3HT/Au结构的多层器件. 通过I-V曲线对比讨论了两种结构器件的开启电压, 串联电阻, 反向漏电流及整流比等参数, 认为包含ZnS修饰层器件的开启电压、串联电阻、反向漏电流明显降低, 整流比显著增强, 展现出更优异的电子传输性能. 光致发光光谱分析结果证实由于ZnS使ZnO纳米 棒的表面缺陷产生的非辐射复合被明显抑制, 弱化了电场激发下的载流子陷获, 改善了器件的导电特性.
    In this paper, the ZnO nanorod arrays (NRAs) with a diameter of 50nm and a length of 250 nm were synthesized by chemical bath deposition method. Two devices with structures of ITO (indium tin oxides)/ZnO/poly-(3-hexylthiophene) (P3HT)/Au and ITO/ZnO@ZnS/P3HT/Au were fabricated and their performances were tested and evaluated separately. The I-V curves were measured for discussion of the threshold voltage, series resistance, reverse leakage current, and rectification ratio. Results show that the device with modified ZnO shows a decline in the threshold voltage, series resistance and reverse leakage current, but has an enhanced rectification ratio. The effect of ZnS coating on the improvement of conductive properties of the device could be attributed to the suppression of the non-radiative recombination of surface defects as shown by means of photoluminescence spectrum.
    • 基金项目: 国家自然科学基金(批准号:60977035,10904109,60907021)和天津市自然科学基金(批准号:11JCYBJC00300)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60977035, 10904109, 60907021), and the Natural Science Foundation of Tianjin, China (Grant No. 11JCYBJC00300).
    [1]

    Nguyen X S, Tay C B, Fitzgerald E A, Chua S J 2012 Small 8 1204

    [2]

    Huang J Z, Li S S, Feng X P 2010 Acta Phys. Sin. 59 5839 (in Chinese) [黄金昭, 李世帅, 冯秀鹏 2010 物理学报 59 5839]

    [3]

    Bahadur L, Kushwaha S 2012 Appl. Phys. A 109 655

    [4]

    Yan Y, Zhao S L, Xu Z, Gong W, Wang D W 2011 Acta Phys. Sin. 60 088803 (in Chinese) [闫悦, 赵谡玲, 徐征, 龚伟, 王大伟 2011 物理学报 60 088803]

    [5]

    Lee C Y, Wang J Y, Chou Y, Cheng C L, Chao C H, Shiu S C, Hung S C, Chao J J, Liu M Y, Su W F, Chen Y F, Lin C F 2009 Nanotechnology 20 425202

    [6]

    Kathalingam A, Rhee J K 2012 Electron. Mater. 41 2162

    [7]

    Bi D, Wu F, Yue W, Guo Y, Shen W, Peng R, Wu H, Wang X, Wang M. 2010 Phys. Chem. C 114 13846

    [8]

    Shi L, Xu Y, Hark S, Liu Y, Wang S, Peng L, Wong K, Li Q 2007 Nano Lett. 7 3559

    [9]

    He J H, Ke J J, Chang P H, Tsai K T, Yang P C, Chan I M 2012 Nanoscale 4 3399

    [10]

    Wang R C, Lin H Y 2009 Appl. Phys. A 95 813

    [11]

    Panigrahi S, Basak D 2011 Chem. Phys. Lett. 511 91

    [12]

    Law M, Greene L E, Radenovic A, Kuykendall T, Liphardt J, Yang P 2006 Phys. Chem. B 110 22652

    [13]

    Lu M Y, Song J, Lu M P, Lee C Y, Chen L J, Wang Z L 2009 Acs Nano 3 357

    [14]

    Wang K, Chen J J, Zeng Z M, Tarr J, Zhou W L, Zhang Y, Yan Y F, Jiang C S, Pern J, Mascarenhas A 2010 Appl. Phys. Lett. 96 123105

    [15]

    Bera A, Basak D 2010 Appl. Mater. & Inter. 2 408

    [16]

    Liu Y R, Wang Z X, Yu J L, Xu H H 2009 Acta Phys. Sin. 58 8566 (in Chinese) [刘玉荣, 王智欣, 虞佳乐, 徐海红 2009 物理学报 58 8566]

    [17]

    Pingel P, Zen A, Abellón R D, Grozema F C, Siebbeles L D A, Neher D 2010 Adv. Funct. Mater. 20 2286

    [18]

    Briseno A L, Holcombe T W, Boukai A I, Garnett E C, Shelton S W, Fréchet J J, Yang P D 2009 Nano Lett. 10 334

    [19]

    McCullough R D, Ewbank P C 1998 Handbook of conducting polymers (New York: CRC PressI Llc) p225

    [20]

    Yin L Q, Peng J B 2009 Acta Phys. Sin. 58 3456 (in Chinese) [尹丽琴, 彭俊彪 2009 物理学报 58 3456]

    [21]

    Peterson R B, Field C L, Gregg B A 2004 Langmuir 20 5114

    [22]

    Nam W H, Lim Y S, Seo W S, Cho H K, Lee J Y 2011 Nano. Res. 13 5825

    [23]

    Schroder D K 2005 Semiconductor material and device characterization (Hoboken: A Wiley-Interscience Publication) 779

    [24]

    Lima S A M, Sigoli F A, Jafelicci M J, Davolos M R 2001 Int. J. Inorg. Mater. 3 749

    [25]

    Djurišić A B, Choy W C H, Roy V A L, Leung Y H, Kwong C Y, Cheah K W, Gundu R T K, Chan W K, Lui H F, Surya C 2004 Adv. Funct. Mater. 14 856

    [26]

    Tam K H, Cheung C K, Leung Y H, Djurišić A B, Ling C C, Beling C D, Fung S, Kwok W M, Chan W K, Phillips D L, Ding L, Ge W K 2006 Phys. Chem. B 110 20865

    [27]

    Reddy N K, Ahsanulhaq Q, Kim J H, Hahn Y B 2008 Appl. Phys. Lett. 92 043127

    [28]

    Matsushima T, Murata H 2009 Appl. Phys. Lett. 95 203306

  • [1]

    Nguyen X S, Tay C B, Fitzgerald E A, Chua S J 2012 Small 8 1204

    [2]

    Huang J Z, Li S S, Feng X P 2010 Acta Phys. Sin. 59 5839 (in Chinese) [黄金昭, 李世帅, 冯秀鹏 2010 物理学报 59 5839]

    [3]

    Bahadur L, Kushwaha S 2012 Appl. Phys. A 109 655

    [4]

    Yan Y, Zhao S L, Xu Z, Gong W, Wang D W 2011 Acta Phys. Sin. 60 088803 (in Chinese) [闫悦, 赵谡玲, 徐征, 龚伟, 王大伟 2011 物理学报 60 088803]

    [5]

    Lee C Y, Wang J Y, Chou Y, Cheng C L, Chao C H, Shiu S C, Hung S C, Chao J J, Liu M Y, Su W F, Chen Y F, Lin C F 2009 Nanotechnology 20 425202

    [6]

    Kathalingam A, Rhee J K 2012 Electron. Mater. 41 2162

    [7]

    Bi D, Wu F, Yue W, Guo Y, Shen W, Peng R, Wu H, Wang X, Wang M. 2010 Phys. Chem. C 114 13846

    [8]

    Shi L, Xu Y, Hark S, Liu Y, Wang S, Peng L, Wong K, Li Q 2007 Nano Lett. 7 3559

    [9]

    He J H, Ke J J, Chang P H, Tsai K T, Yang P C, Chan I M 2012 Nanoscale 4 3399

    [10]

    Wang R C, Lin H Y 2009 Appl. Phys. A 95 813

    [11]

    Panigrahi S, Basak D 2011 Chem. Phys. Lett. 511 91

    [12]

    Law M, Greene L E, Radenovic A, Kuykendall T, Liphardt J, Yang P 2006 Phys. Chem. B 110 22652

    [13]

    Lu M Y, Song J, Lu M P, Lee C Y, Chen L J, Wang Z L 2009 Acs Nano 3 357

    [14]

    Wang K, Chen J J, Zeng Z M, Tarr J, Zhou W L, Zhang Y, Yan Y F, Jiang C S, Pern J, Mascarenhas A 2010 Appl. Phys. Lett. 96 123105

    [15]

    Bera A, Basak D 2010 Appl. Mater. & Inter. 2 408

    [16]

    Liu Y R, Wang Z X, Yu J L, Xu H H 2009 Acta Phys. Sin. 58 8566 (in Chinese) [刘玉荣, 王智欣, 虞佳乐, 徐海红 2009 物理学报 58 8566]

    [17]

    Pingel P, Zen A, Abellón R D, Grozema F C, Siebbeles L D A, Neher D 2010 Adv. Funct. Mater. 20 2286

    [18]

    Briseno A L, Holcombe T W, Boukai A I, Garnett E C, Shelton S W, Fréchet J J, Yang P D 2009 Nano Lett. 10 334

    [19]

    McCullough R D, Ewbank P C 1998 Handbook of conducting polymers (New York: CRC PressI Llc) p225

    [20]

    Yin L Q, Peng J B 2009 Acta Phys. Sin. 58 3456 (in Chinese) [尹丽琴, 彭俊彪 2009 物理学报 58 3456]

    [21]

    Peterson R B, Field C L, Gregg B A 2004 Langmuir 20 5114

    [22]

    Nam W H, Lim Y S, Seo W S, Cho H K, Lee J Y 2011 Nano. Res. 13 5825

    [23]

    Schroder D K 2005 Semiconductor material and device characterization (Hoboken: A Wiley-Interscience Publication) 779

    [24]

    Lima S A M, Sigoli F A, Jafelicci M J, Davolos M R 2001 Int. J. Inorg. Mater. 3 749

    [25]

    Djurišić A B, Choy W C H, Roy V A L, Leung Y H, Kwong C Y, Cheah K W, Gundu R T K, Chan W K, Lui H F, Surya C 2004 Adv. Funct. Mater. 14 856

    [26]

    Tam K H, Cheung C K, Leung Y H, Djurišić A B, Ling C C, Beling C D, Fung S, Kwok W M, Chan W K, Phillips D L, Ding L, Ge W K 2006 Phys. Chem. B 110 20865

    [27]

    Reddy N K, Ahsanulhaq Q, Kim J H, Hahn Y B 2008 Appl. Phys. Lett. 92 043127

    [28]

    Matsushima T, Murata H 2009 Appl. Phys. Lett. 95 203306

  • [1] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [2] 牛璐, 王鹿霞. 外场对分子纳米结电流-电压特性的影响. 物理学报, 2018, 67(2): 027304. doi: 10.7498/aps.67.20171604
    [3] 肖美霞, 梁尤平, 陈玉琴, 刘萌. 应变对两层半氢化氮化镓薄膜电磁学性质的调控机理研究. 物理学报, 2016, 65(2): 023101. doi: 10.7498/aps.65.023101
    [4] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [5] 袁俊辉, 谢晴兴, 余念念, 王嘉赋. 单层SbAs和BiSb的表面修饰调控. 物理学报, 2016, 65(21): 217101. doi: 10.7498/aps.65.217101
    [6] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [7] 杨彦楠, 王新强, 卢励吾, 黄呈橙, 许福军, 沈波. InAlN材料表面态性质研究. 物理学报, 2013, 62(17): 177302. doi: 10.7498/aps.62.177302
    [8] 石巍巍, 李雯, 仪明东, 解令海, 韦玮, 黄维. 基于栅绝缘层表面修饰的有机场效应晶体管迁移率的研究进展. 物理学报, 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [9] 邹志宇, 刘晓芳, 曾敏, 杨白, 于荣海, 姜鹤, 唐瑞鹤, 吴章奔. 电场辅助溶解法实现玻璃表面金纳米粒子的形貌控制. 物理学报, 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [10] 郑立思, 冯苗, 詹红兵. 表面修饰基团对金纳米颗粒非线性光学效应的影响研究. 物理学报, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [11] 李金花, 王鹿霞. 光激发下分子纳米结中电荷输运的振动效应研究. 物理学报, 2011, 60(11): 117310. doi: 10.7498/aps.60.117310
    [12] 张元, 王鹿霞. 红外光激发作用下分子导电纳米结的非弹性电流研究. 物理学报, 2011, 60(4): 047304. doi: 10.7498/aps.60.047304
    [13] 邵铮铮, 王晓峰, 张学骜, 常胜利. 原子力显微技术研究ZnO纳米棒的压电放电特性. 物理学报, 2010, 59(1): 550-554. doi: 10.7498/aps.59.550
    [14] 阚鹏志, 赵谡玲, 徐征, 孔超, 王大伟, 闫悦. ZnO纳米棒在聚[2-甲氧基-5-(2-乙基-己氧基)-1,4-苯撑乙烯撑]固态阴极射线发光器件中的应用研究. 物理学报, 2010, 59(1): 616-619. doi: 10.7498/aps.59.616
    [15] 刘玉荣, 王智欣, 虞佳乐, 徐海红. 高迁移率聚合物薄膜晶体管. 物理学报, 2009, 58(12): 8566-8570. doi: 10.7498/aps.58.8566
    [16] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究. 物理学报, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [17] 王 烨, 许小亮, 谢炜宇, 汪壮兵, 吕 柳, 赵亚丽. 两步法制备空间取向高度一致的ZnO纳米棒阵列. 物理学报, 2008, 57(4): 2582-2586. doi: 10.7498/aps.57.2582
    [18] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应. 物理学报, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [19] 杨学文, 郑家贵, 张静全, 冯良桓, 蔡 伟, 蔡亚平, 李 卫, 黎 兵, 雷 智, 武莉莉. CdTe/CdS太阳电池I-V,C-V特性研究. 物理学报, 2006, 55(5): 2504-2507. doi: 10.7498/aps.55.2504
    [20] 李宏伟, 王太宏. InAs量子点在肖特基势垒二极管输运特性中的影响. 物理学报, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
计量
  • 文章访问数:  4618
  • PDF下载量:  16417
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-04
  • 修回日期:  2013-06-24
  • 刊出日期:  2013-10-05

/

返回文章
返回