搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光谱稳定的混合卤素蓝光钙钛矿LED设计

冯继雨 刘敏 屈正国 赵东楠 李道鹏 史同飞

引用本文:
Citation:

光谱稳定的混合卤素蓝光钙钛矿LED设计

冯继雨, 刘敏, 屈正国, 赵东楠, 李道鹏, 史同飞

Compositional design of spectrally stable blue mixed-halide perovskite LEDs

FENG Jiyu, LIU Min, QU Zhengguo, ZHAO Dongnan, LI Daopeng, SHI Tongfei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 钙钛矿材料因其可调带隙和高荧光效率成为发光二极管(LED)的研究热点, 但混合卤素(Br/Cl)体系的相分离问题严重制约蓝光LED的稳定性. 本文提出通过调控前驱体中铯铅含量比, 形成CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6复合相结构. 结果表明, Cs4Pb(Br1–xClx)6相的纳米晶颗粒聚集并包复在CsPb(Br1–xClx)3大晶粒周围, 物理上阻隔了卤素离子的迁移, 避免了相分离的产生. 宽带隙的Cs4Pb(Br1–xClx)6还引入了量子限域效应, 钝化表面缺陷态, 提升CsPb(Br1–xClx)3材料光电性能. 优化后的器件在50 mA/cm²电流密度下光谱稳定性显著提升. 该研究为高稳定性蓝光钙钛矿LED提供了新思路.
    This study tackles the significant challenge of phase separation in mixed halide (Br/Cl) perovskite systems, which severely affects the spectral stability of blue perovskite light-emitting diodes (PeLEDs). A compositional engineering strategy is proposed, precisely controlling the Cs:Pb molar ratio (1∶1 to 1.1∶1) in precursor solutions to construct a CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 composite phase structure. Transmission electron microscopy (TEM) mapping and X-ray diffraction (XRD) analysis confirm that Cs4Pb(Br1–xClx)6 nanocrystals (5–8 nm in diameter) grow in situ and uniformly encapsulate CsPb(Br1–xClx)3 microparticles (50–100 nm). This composite architecture has double functional advantages: 1) the Cs4PbX6 shell acts as a physical barrier, reducing halide ion migration activation energy and suppressing phase segregation during continuous operation; 2) the wide-bandgap (3.9–4.3 eV) Cs4PbX6 induces quantum confinement effects, confining carriers within CsPbX3 while passivating defect states, thereby improving perovskite performance. The optimized PeLED achieves notable improvements in brightness, external quantum efficiency, and operational stability, maintaining stable emission at 478 nm under a 50 mA/cm² current density. This is achieved by inhibiting halide phase separation and enhancing the efficiency of carrier recombination achieved by the cesium-lead halide heterojunction system. This work provides fundamental insights into phase-stable perovskite design via composite crystallization kinetics, providing a viable pathway toward commercial-grade blue PeLEDs for full-color displays.
  • 图 1  (a) CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6钙钛矿器件的能级图; (b), (c) Cs/Pb = 1和Cs/Pb = 1.1的钙钛矿薄膜的XRD图谱; (d), (g) Cs/Pb = 1和Cs/Pb = 1.1的钙钛矿薄膜的TEM图像, 比例尺为200 nm; (e), (h) Cs/Pb = 1和Cs/Pb = 1.1的钙钛矿薄膜的TEM图像, 比例尺为50 nm; (f), (i) Cs/Pb = 1和Cs/Pb = 1.1的钙钛矿薄膜的高分辨透射电子显微镜(HRTEM)图像, 比例尺为5 nm, 其对应的快速傅里叶变换(FFT)图案显示在左上角

    Fig. 1.  (a) Energy level diagram of the CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 perovskite device; (b), (c) XRD patterns of perovskite films with Cs/Pb = 1 and Cs/Pb = 1.1, respectively; (d), (g) TEM images of perovskite films with Cs/Pb = 1 and Cs/Pb = 1.1, respectively, at a scale bar of 200 nm; (e), (h) TEM images of perovskite films with Cs/Pb = 1 and Cs/Pb = 1.1, respectively, at a scale bar of 50 nm; (f), (i) HRTEM images of perovskite films with Cs/Pb = 1 and Cs/Pb = 1.1, respectively, at a scale bar of 5 nm, with their corresponding fast Fourier transform (FFT) patterns shown in the upper left corner.

    图 2  混合卤化物钙钛矿化合物CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6的光致发光(PL)特性 (a) x = 0.1时的PL光谱; (b) x = 0.2时的PL光谱; (c) x = 0.3时的PL光谱; (d) x = 0.4时的PL光谱

    Fig. 2.  Photoluminescence (PL) mixed-halide perovskite compounds CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6: (a) PL spectrum for x = 0.1; (b) PL spectrum for x = 0.2; (c) PL spectrum for x = 0.3; (d) PL spectrum for x = 0.4.

    图 3  混合卤化物钙钛矿化合物CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6在温度从290 K降至150 K时的温度依赖性光致发光(PL)光谱 (a) x = 0.1时的PL光谱; (b) x = 0.2时的PL光谱; (c) x = 0.3时的PL光谱; (d) x = 0.4时的PL光谱

    Fig. 3.  Temperature-dependent photoluminescence (PL) spectra of mixed-halide perovskite compounds CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 as the temperature decreases from 290 to 150 K: (a) PL spectrum for x = 0.1; (b) PL spectrum for x = 0.2; (c) PL spectrum for x = 0.3; (d) PL spectrum for x = 0.4.

    图 4  混合卤化物钙钛矿化合物CsPb(Br1–xClx)3和CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6在电流密度为50 mA/cm²时测量的电致发光(EL)光谱 (a), (b) CsPb(Br1–xClx)3和CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6x = 0.1时的EL光谱; (c), (d) CsPb(Br1–xClx)3和CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6x = 0.2时的EL光谱; (e), (f) CsPb(Br1–xClx)3和CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6x = 0.3时的EL光谱; (g), (h) CsPb(Br1–xClx)3和CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6x = 0.4时的EL光谱

    Fig. 4.  Electroluminescence (EL) spectra of mixed-halide perovskite compounds CsPb(Br1–xClx)3 and CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 measured under a current density of 50 mA/cm²: (a), (b) EL spectra of CsPb(Br1–xClx)3 and CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 at x = 0.1, respectively; (c) and (d) EL spectra of CsPb(Br1-xClx)3 and CsPb(Br1-xClx)3/Cs4Pb(Br1-xClx)6 at x = 0.2, respectively; (e), (f) EL spectra of CsPb(Br1–xClx)3 and CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 at x = 0.3, respectively; (g), (h) EL spectra of CsPb(Br1–xClx)3 and CsPb(Br1–xClx)3/Cs4Pb(Br1–xClx)6 at x = 0.4, respectively.

    图 5  (a), (b) Cs/Pb = 1和Cs/Pb = 1.1时CsPb(Br1–xClx)3J-V曲线; (c), (d) Cs/Pb = 1和Cs/Pb = 1.1时CsPb(Br1–xClx)3J-L曲线; (e), (f) Cs/Pb = 1和Cs/Pb = 1.1时CsPb(Br1–xClx)3的EQE曲线; (g), (h) Cs/Pb = 1和Cs/Pb = 1.1在50 mA/cm2电流密度下CsPb(Br1–xClx)3寿命曲线

    Fig. 5.  (a), (b) JV curves of CsPb(Br1–xClx)3 with Cs/Pb = 1 and Cs/Pb = 1.1, respectively; (c), (d) JL curves of CsPb(Br1–xClx)3 with Cs/Pb = 1 and Cs/Pb = 1.1, respectively; (e), (f) external quantum efficiency (EQE) curves of CsPb(Br1–xClx)3 with Cs/Pb = 1 and Cs/Pb = 1.1, respectively; (g), (h) lifetime curves of CsPb(Br1–xClx)3 with Cs/Pb = 1 and Cs/Pb = 1.1 measured at a current density of 50 mA/cm2, respectively.

  • [1]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [2]

    deQuilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E, Ginger D S 2016 ACS Energy Lett. 1 438Google Scholar

    [3]

    Steirer K X, Schulz P, Teeter G, Stevanovic V, Yang M, Zhu K, Berry J J 2016 ACS Energy Lett. 1 360Google Scholar

    [4]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nature Nanotechnol. 9 687Google Scholar

    [5]

    Batignani G, Fumero G, Kandada A R S, Cerullo G, Gandini M, Ferrante C, Petrozza A, Scopigno T 2018 Nat. Commun. 9 1971Google Scholar

    [6]

    Ivanovska T, Dionigi C, Mosconi E, De Angelis F, Liscio F, Morandi V, Ruani G 2017 J. Phys. Chem. Lett. 8 3081Google Scholar

    [7]

    Feng S C, Shen Y, Hu X M, Su Z H, Zhang K, Wang B F, Cao L X, Xie F M, Li H Z, Gao X, Tang J X, Li Y Q 2024 Adv. Mater. 36 2410225

    [8]

    Xing Z, Jin G, Du Q, Pang P, Liu T, Shen Y, Zhang D, Yu B, Liang Y, Yang D, Tang J, Wang L, Xing G, Chen J, Ma D 2024 Adv. Mater. 36 2406706Google Scholar

    [9]

    Gao Y, Cai Q, He Y, Zhang D, Cao Q, Zhu M, Ma Z, Zhao B, He H, Di D, Ye Z, Dai X 2024 Sci. Adv. 10 eado5645Google Scholar

    [10]

    Jiang Y, Sun C, Xu J, Li S, Cui M, Fu X, Liu Y, Liu Y, Wan H, Wei K, Zhou T, Zhang W, Yang Y, Yang J, Qin C, Gao S, Pan J, Liu Y, Hoogland S, Sargent E H, Chen J, Yuan M 2022 Nature 612 679Google Scholar

    [11]

    Guo B, Lai R, Jiang S, Zhou L, Ren Z, Lian Y, Li P, Cao X, Xing S, Wang Y, Li W, Zou C, Chen M, Hong Z, Li C, Zhao B, Di D 2022 Nat. Photonics 16 637Google Scholar

    [12]

    Kim J S, Heo J M, Park G S, Woo S J, Cho C, Yun H J, Kim D H, Park J, Lee S C, Park S H, Yoon E, Greenham N C, Lee T W 2022 Nature 611 688Google Scholar

    [13]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [14]

    Chu Z, Zhao Y, Ma F, Zhang C X, Deng H, Gao F, Ye Q, Meng J, Yin Z, Zhang X, You J 2020 Nat. Commun. 11 4165Google Scholar

    [15]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [16]

    Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z H, Xiong Q, Sargent E H 2018 Nat. Commun. 9 3541Google Scholar

    [17]

    Li Z, Chen Z, Shi Z, Zou G, Chu L, Chen X K, Zhang C, So S K, Yip H L 2023 Nat. Commun. 14 6441Google Scholar

    [18]

    Karlsson M, Yi Z, Reichert S, Luo X, Lin W, Zhang Z, Bao C, Zhang R, Bai S, Zheng G, Teng P, Duan L, Lu Y, Zheng K, Pullerits T, Deibel C, Xu W, Friend R, Gao F 2021 Nat. Commun. 12 361Google Scholar

    [19]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [20]

    Brennan M C, Draguta S, Kamat P V, Kuno M 2018 ACS Energy Lett. 3 204Google Scholar

    [21]

    Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z-H, Xiong Q, Sargent E H 2018 Nat. Commun. 9 3541Google Scholar

    [22]

    Wang X, Ling Y, Lian X, Xin Y, Dhungana K B, Perez O F, Knox J, Chen Z, Zhou Y, Beery D, Hanson K, Shi J, Lin S, Gao H 2019 Nat. Commun. 10 695Google Scholar

    [23]

    Wang L, Liu H, Zhang Y, Mohammed O F 2020 ACS Energy Lett. 5 87Google Scholar

    [24]

    Du P, Li J, Wang L, Sun L, Wang X, Xu X, Yang L, Pang J, Liang W, Luo J, Ma Y, Tang J 2021 Nat. Commun. 12 4751Google Scholar

  • [1] 张俊廷, 纪克, 谢禹, 李超. 基于钙钛矿的二维铁磁体Sr2RuO4单层. 物理学报, doi: 10.7498/aps.73.20241042
    [2] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, doi: 10.7498/aps.70.20210586
    [3] 余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青. 锡基钙钛矿的研究进展及其在发光二极管中的应用. 物理学报, doi: 10.7498/aps.70.20201284
    [4] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, doi: 10.7498/aps.70.20201379
    [5] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, doi: 10.7498/aps.69.20191767
    [6] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, doi: 10.7498/aps.69.20191269
    [7] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, doi: 10.7498/aps.69.20200755
    [8] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, doi: 10.7498/aps.69.20200566
    [9] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, doi: 10.7498/aps.68.20190306
    [10] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛. 有机添加剂在金属卤化钙钛矿发光二极管中的应用. 物理学报, doi: 10.7498/aps.68.20190307
    [11] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, doi: 10.7498/aps.68.20190258
    [12] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, doi: 10.7498/aps.68.20190647
    [13] 段聪聪, 程露, 殷垚, 朱琳. 蓝光钙钛矿发光二极管: 机遇与挑战. 物理学报, doi: 10.7498/aps.68.20190745
    [14] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, doi: 10.7498/aps.66.047801
    [15] 刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云. Si(110)和Si(111)衬底上制备InGaN/GaN蓝光发光二极管. 物理学报, doi: 10.7498/aps.63.207304
    [16] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究. 物理学报, doi: 10.7498/aps.62.017805
    [17] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, doi: 10.7498/aps.61.127807
    [18] 汪津, 赵毅, 谢文法, 段羽, 陈平, 刘式墉. 利用DPVBi插层提高蓝色荧光有机电致发光器件的效率. 物理学报, doi: 10.7498/aps.60.107203.2
    [19] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, doi: 10.7498/aps.58.7189
    [20] 罗 毅, 郭文平, 邵嘉平, 胡 卉, 韩彦军, 薛 松, 汪 莱, 孙长征, 郝智彪. GaN基蓝光发光二极管的波长稳定性研究. 物理学报, doi: 10.7498/aps.53.2720
计量
  • 文章访问数:  281
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-07
  • 修回日期:  2025-05-12
  • 上网日期:  2025-05-27

/

返回文章
返回