搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用离子声波朗道阻尼测量氧化物阴极放电中的离子温度

胡广海 金晓丽 张乔枫 谢锦林 刘万东

引用本文:
Citation:

利用离子声波朗道阻尼测量氧化物阴极放电中的离子温度

胡广海, 金晓丽, 张乔枫, 谢锦林, 刘万东

Measurement of ion temperature by ion-acoustic waves Landau damping in oxide cathode plasma

Hu Guang-Hai, Jin Xiao-Li, Zhang Qiao-Feng, Xie Jin-Lin, Liu Wan-Dong
PDF
导出引用
  • 作为等离子体重要参数之一, 特别是在低温等离子体中离子温度的测量一直较为困难. 在磁化线性等离子体装置氧化物阴极脉冲放电条件下, 利用栅网激发离子声波, 通过测量波幅在朗道阻尼作用下随空间的演化, 利用阻尼长度是离子温度和电子温度的函数, 计算得到离子温度为0.3 eV. 测量值与国外类似装置利用光谱诊断所得结果基本相同.
    Ion temperature is one of the fundamental plasma parameters, which is important for studying the plasma behavior and instabilities. The measurement of ion temperature is very difficult especially in a low temperature plasma. The traditional passive and active (laser induced fluorescence) spectral diagnostics are complex and expensive because of the low value of the ion temperature, while the resolution of the retarding energy analyzer is not fine enough to measure the small T_i. Here we utilize the method of ion acoustic wave Landau damping to measure the ion temperature in the linear magnetized plasma device, where the 2 meter long plasma column with 12 cm in diameter is produced by an indirectly heated oxide cathode plasma source. The device provides a wide range of plasma parameters for many fundamental issues of plasma research. The typical plasma density is 2×1017 m-3 and neutral argon pressure is 0.02 Pa. Discharge pulse length is 5.8 ms with a plateau period of 4.8 ms. Ion acoustic waves (IAWs) are excited via biased plane stainless mesh grid with a high transparency of 80%. The grid with 10 cm in diameter is located in the center of the device (1.5 m away from the plasma source), while its normal axis is parallel to the magnetic field lines. Ion acoustic waves are excited during the discharge pulse via the sine signals applied to the grid. The biasing peak-peak voltage is 12 V with frequencies of 800 kHz and 1 MHz. IAW is also excited with biasing voltage 24 V and frequency 800 kHz, while the experimental results exclude the existence of the ion burst mode. A movable Langmuir probe controlled by a step motor is used to measure the spatial evolution of the IAW along the magnetic field. Thus the damping length and the phase velocity of the IAW propagating in the magnetic field are measured under different conditions. The measured phase velocity is around 3200 m/s in plasma coordinate. The electron temperature is measured to be 2.9 eV resulting from the V-I curve of single probe. Based on the measured damping length, the ion temperature is measured to be 0.3 eV, which is very consistent with the results measured by spectral diagnostics on other similar linear machines.
      通信作者: 谢锦林, jlxie@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11275200)资助的课题.
      Corresponding author: Xie Jin-Lin, jlxie@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11275200).
    [1]

    Mantica P, Angioni C, Challis C 2011 Phys. Rev. Lett. 107 135004

    [2]

    Zakeri-Khatir H, Aghamir F M 2015 Chin. Phys. B 24 25201

    [3]

    Zou X, Liu H P, Gu X E 2008 Acta Phys. Sin. 57 5111(in Chinese) [邹秀, 刘惠平, 谷秀娥 2008 物理学报 57 5111]

    [4]

    Hutchinson I H 2002 Principle of Plasma Diagnostics (2nd Ed.) (Cambridge: Cambridge University Press) pp240-267, pp65-66

    [5]

    Xiang Z L, Yu C X 1982 Principle of High Temperature Plasma Diagnostics (Shanghai: Shanghai Science and Technology Press) pp27-89 (in Chinese) [项志遴, 俞昌旋 1982 高温等离子体诊断技术 (上海: 上海科技出版社)第27–89页]

    [6]

    Guillermo D, Pablo M, Julio P 1986 Rev. Sci. Instrum. 57 1501

    [7]

    Stenzel R L, Williams R, Aguero R, Kitazaki K, Ling A, McDonald T, Spitzer J 1982 Rev. Sci. Instrum. 53 1027

    [8]

    Gulbrandsen N, Fredriksen A, Caër J, Scime E 2015 Phys. Plasmas 22 033505

    [9]

    Jaehnig K P, Fonck R J, Ida K, Powell E T 1985 Rev. Sci. Instrum. 56 865

    [10]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 85 11E428

    [11]

    Wei Y L, Yu D L, Liu L, Ida K, von Hellermann M, Cao J Y, Sun A P, Ma Q, Chen W J, Liu Y, Yan L W, Yang Q W, Duan X R, Liu Y 2014 Rev. Sci. Instrum. 85 103503

    [12]

    Goeckner M J, Goree J 1989 J. Vac. Sci. Technol. A 7 977

    [13]

    Den Hartog E A, Persing H, Claude R W 1990 Appl. Phys. Lett. 57 661

    [14]

    Stefan R, Mats L, Peder R, Danijela R, Johan L, Sven M, Wei S 2001 Rev. Sci. Instrum. 72 4300

    [15]

    Sato T, de Kock L C J M, Winkel T H G A 1972 Plasma Phys. 15 921

    [16]

    Francis F C 1983 Plasma Physics and Controlled Fusion (2nd Ed.) (London: Springer) pp245-249

    [17]

    Alexeff I, Neidigh R V 1963 Phys. Rev. 129 516

    [18]

    Hirose A, Alexeff I, Jones W D 1970 Phys. Fluids 13 1290

    [19]

    Wong A Y, Motley R W, Angelo N D 1964 Phys.Rev 133 A436

    [20]

    Leneman D, Gekelman W, Maggs J 2006 Rev. Sci. Instrum. 77 015108

    [21]

    Gekelman W, Pfister H, Bamber J, Leneman D, Maggs J 1991 Rev. Sci. Instrum. 62 2875

    [22]

    Alfred Y W 1977 Introduction to Experimental Plasma Physics (Vol. 1) (London: Springer) pp79-139

    [23]

    Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432(in Chinese) [王道泳, 马锦秀, 李毅人, 张文贵 2009 物理学报 58 8432]

    [24]

    Alexeff I, Jones W D, Lonngren K E 1968 Phys. Rev. Lett. 21 878

    [25]

    Estabrook K, widner M, Alexeff I, Jones W D 1971 Phys. Fluids 14 1792

    [26]

    Lonngren K E, Khazei M, Gabl E F, Bulson J M 1982 Plasma Phys. 24 1483

    [27]

    Gabl E F, Lonngren K E 1984 Plasma Phys. Contrl. Fusion 26 799

    [28]

    Raychaudhuri S, Gabl E F, Tsikis E K, Lonngren K E 1984 Plasma Phys. Contrl. Fusion 26 1451

    [29]

    Alexeff I, Jones W D 1967 Phys. Rev. Lett. 21 422

    [30]

    Francis F C 2003 IEEE-ICOPS Meetin Langmuir Probe Diagnostics Jeju Korea, June 5 2003

    [31]

    Michael A L , Allan J L 2005 Principles of Plasma Discharge and Materials Processing (2nd Ed.) (New Jercey: Wiley-Interscience) p77

    [32]

    Ma T C, Hu X W, Chen Y H 2011 The Physics of Plasma (Beijing: Science and Technology of China Press) pp343-347 (in Chinese) [马腾才, 胡希伟, 陈银华 2011 等离子体物理原理 (北京: 中国科学技术出版社) 第343–347页]

    [33]

    Boivin R F, Scime E E 2003 Rev. Sci. Instrum. 74 4352

    [34]

    David P 2009 Ph. D Dissertation (Los Angeles: University of California)

  • [1]

    Mantica P, Angioni C, Challis C 2011 Phys. Rev. Lett. 107 135004

    [2]

    Zakeri-Khatir H, Aghamir F M 2015 Chin. Phys. B 24 25201

    [3]

    Zou X, Liu H P, Gu X E 2008 Acta Phys. Sin. 57 5111(in Chinese) [邹秀, 刘惠平, 谷秀娥 2008 物理学报 57 5111]

    [4]

    Hutchinson I H 2002 Principle of Plasma Diagnostics (2nd Ed.) (Cambridge: Cambridge University Press) pp240-267, pp65-66

    [5]

    Xiang Z L, Yu C X 1982 Principle of High Temperature Plasma Diagnostics (Shanghai: Shanghai Science and Technology Press) pp27-89 (in Chinese) [项志遴, 俞昌旋 1982 高温等离子体诊断技术 (上海: 上海科技出版社)第27–89页]

    [6]

    Guillermo D, Pablo M, Julio P 1986 Rev. Sci. Instrum. 57 1501

    [7]

    Stenzel R L, Williams R, Aguero R, Kitazaki K, Ling A, McDonald T, Spitzer J 1982 Rev. Sci. Instrum. 53 1027

    [8]

    Gulbrandsen N, Fredriksen A, Caër J, Scime E 2015 Phys. Plasmas 22 033505

    [9]

    Jaehnig K P, Fonck R J, Ida K, Powell E T 1985 Rev. Sci. Instrum. 56 865

    [10]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 85 11E428

    [11]

    Wei Y L, Yu D L, Liu L, Ida K, von Hellermann M, Cao J Y, Sun A P, Ma Q, Chen W J, Liu Y, Yan L W, Yang Q W, Duan X R, Liu Y 2014 Rev. Sci. Instrum. 85 103503

    [12]

    Goeckner M J, Goree J 1989 J. Vac. Sci. Technol. A 7 977

    [13]

    Den Hartog E A, Persing H, Claude R W 1990 Appl. Phys. Lett. 57 661

    [14]

    Stefan R, Mats L, Peder R, Danijela R, Johan L, Sven M, Wei S 2001 Rev. Sci. Instrum. 72 4300

    [15]

    Sato T, de Kock L C J M, Winkel T H G A 1972 Plasma Phys. 15 921

    [16]

    Francis F C 1983 Plasma Physics and Controlled Fusion (2nd Ed.) (London: Springer) pp245-249

    [17]

    Alexeff I, Neidigh R V 1963 Phys. Rev. 129 516

    [18]

    Hirose A, Alexeff I, Jones W D 1970 Phys. Fluids 13 1290

    [19]

    Wong A Y, Motley R W, Angelo N D 1964 Phys.Rev 133 A436

    [20]

    Leneman D, Gekelman W, Maggs J 2006 Rev. Sci. Instrum. 77 015108

    [21]

    Gekelman W, Pfister H, Bamber J, Leneman D, Maggs J 1991 Rev. Sci. Instrum. 62 2875

    [22]

    Alfred Y W 1977 Introduction to Experimental Plasma Physics (Vol. 1) (London: Springer) pp79-139

    [23]

    Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432(in Chinese) [王道泳, 马锦秀, 李毅人, 张文贵 2009 物理学报 58 8432]

    [24]

    Alexeff I, Jones W D, Lonngren K E 1968 Phys. Rev. Lett. 21 878

    [25]

    Estabrook K, widner M, Alexeff I, Jones W D 1971 Phys. Fluids 14 1792

    [26]

    Lonngren K E, Khazei M, Gabl E F, Bulson J M 1982 Plasma Phys. 24 1483

    [27]

    Gabl E F, Lonngren K E 1984 Plasma Phys. Contrl. Fusion 26 799

    [28]

    Raychaudhuri S, Gabl E F, Tsikis E K, Lonngren K E 1984 Plasma Phys. Contrl. Fusion 26 1451

    [29]

    Alexeff I, Jones W D 1967 Phys. Rev. Lett. 21 422

    [30]

    Francis F C 2003 IEEE-ICOPS Meetin Langmuir Probe Diagnostics Jeju Korea, June 5 2003

    [31]

    Michael A L , Allan J L 2005 Principles of Plasma Discharge and Materials Processing (2nd Ed.) (New Jercey: Wiley-Interscience) p77

    [32]

    Ma T C, Hu X W, Chen Y H 2011 The Physics of Plasma (Beijing: Science and Technology of China Press) pp343-347 (in Chinese) [马腾才, 胡希伟, 陈银华 2011 等离子体物理原理 (北京: 中国科学技术出版社) 第343–347页]

    [33]

    Boivin R F, Scime E E 2003 Rev. Sci. Instrum. 74 4352

    [34]

    David P 2009 Ph. D Dissertation (Los Angeles: University of California)

  • [1] 丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜. 钠离子层状氧化物材料相变及其对性能的影响. 物理学报, 2022, 71(10): 108801. doi: 10.7498/aps.71.20220291
    [2] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [3] 赵世平, 张鑫, 刘智慧, 王全, 王华林, 姜薇薇, 刘超前, 王楠, 刘世民, 崔云先, 马艳平, 丁万昱, 巨东英. 低能氨离子/基团扩散对铟锡氧化物薄膜电学性质的影响规律. 物理学报, 2020, 69(23): 236801. doi: 10.7498/aps.69.20200860
    [4] 赵军亚, 李晨旭, 马晓栋. 碟形玻色-爱因斯坦凝聚体中(0, 0, 2)剪刀模的朗道阻尼和频移. 物理学报, 2019, 68(23): 230304. doi: 10.7498/aps.68.20190661
    [5] 蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏. 铟锡氧化物薄膜表面等离子体损耗降低的研究. 物理学报, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [6] 王建勇, 程雪苹, 曾莹, 张元祥, 葛宁怡. Korteweg-de Vries方程的准孤立子解及其在离子声波中的应用. 物理学报, 2018, 67(11): 110201. doi: 10.7498/aps.67.20180094
    [7] 柴兆亮, 周昱, 马晓栋. 雪茄形铷原子玻色-爱因斯坦凝聚中单极子模的朗道阻尼和频移. 物理学报, 2013, 62(13): 130307. doi: 10.7498/aps.62.130307
    [8] 陈晓波, 杨国建, 李崧, Sawanobori N., 徐怡庄, 陈晓端, 周固. 掺钬镱离子的氟氧化物玻璃陶瓷的一级和二级红外量子剪裁的研究. 物理学报, 2012, 61(22): 227803. doi: 10.7498/aps.61.227803
    [9] 张敏, 王小霞, 罗积润, 廖显恒. 等离子喷涂含钪氧化物阴极制备及发射特性研究. 物理学报, 2012, 61(7): 077901. doi: 10.7498/aps.61.077901
    [10] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [11] 王其富, 王小霞, 罗积润. 纳米碳酸盐制备阴极的蒸发特性研究. 物理学报, 2011, 60(3): 038502. doi: 10.7498/aps.60.038502
    [12] 王其富, 王小霞, 罗积润, 赵青兰. 颗粒状纳米碳酸钡锶钙的研制. 物理学报, 2010, 59(10): 7383-7389. doi: 10.7498/aps.59.7383
    [13] 王小霞, 廖显恒, 罗积润, 赵青兰, 张晓伟. 新型贮存式氧化物阴极寿命机理的初步探讨. 物理学报, 2009, 58(2): 1280-1286. doi: 10.7498/aps.58.1280
    [14] 季沛勇, 鲁楠, 祝俊. 量子等离子体中波的色散关系以及朗道阻尼. 物理学报, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [15] 王小霞, 廖显恒, 罗积润, 赵青兰. 亚微米电子发射材料的合成及发射性能. 物理学报, 2008, 57(3): 1924-1929. doi: 10.7498/aps.57.1924
    [16] 郑坚, 刘万东, 俞昌旋. 离子声波对电子输运的影响. 物理学报, 2001, 50(4): 721-725. doi: 10.7498/aps.50.721
    [17] 肖定全, 韦力凡, 李子森, 朱建国, 钱正洪, 彭文斌. 金属氧化物薄膜的多离子束反应共溅射模型(Ⅱ)——数值计算与结果讨论. 物理学报, 1996, 45(2): 345-352. doi: 10.7498/aps.45.345
    [18] 肖定全, 韦力凡, 李子森, 朱建国, 钱正洪, 彭文斌. 金属氧化物薄膜的多离子束反应共溅射模型(Ⅰ)——模型建立. 物理学报, 1996, 45(2): 330-338. doi: 10.7498/aps.45.330
    [19] 黄彭年, 黄熙怀. MO2,M2O5和MO3氧化物对锂硼酸盐玻璃离子导电性的影响. 物理学报, 1989, 38(10): 1628-1633. doi: 10.7498/aps.38.1628
    [20] 张恩虬. 关于热电子发射理论的评述(Ⅰ)——对氧化物阴极的半导体模型的批判. 物理学报, 1974, 23(5): 43-52. doi: 10.7498/aps.23.43
计量
  • 文章访问数:  3384
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-14
  • 修回日期:  2015-08-20
  • 刊出日期:  2015-09-05

利用离子声波朗道阻尼测量氧化物阴极放电中的离子温度

  • 1. 中国科学技术大学近代物理系, 合肥 230026
  • 通信作者: 谢锦林, jlxie@ustc.edu.cn
    基金项目: 国家自然科学基金(批准号: 11275200)资助的课题.

摘要: 作为等离子体重要参数之一, 特别是在低温等离子体中离子温度的测量一直较为困难. 在磁化线性等离子体装置氧化物阴极脉冲放电条件下, 利用栅网激发离子声波, 通过测量波幅在朗道阻尼作用下随空间的演化, 利用阻尼长度是离子温度和电子温度的函数, 计算得到离子温度为0.3 eV. 测量值与国外类似装置利用光谱诊断所得结果基本相同.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回