搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能氨离子/基团扩散对铟锡氧化物薄膜电学性质的影响规律

赵世平 张鑫 刘智慧 王全 王华林 姜薇薇 刘超前 王楠 刘世民 崔云先 马艳平 丁万昱 巨东英

引用本文:
Citation:

低能氨离子/基团扩散对铟锡氧化物薄膜电学性质的影响规律

赵世平, 张鑫, 刘智慧, 王全, 王华林, 姜薇薇, 刘超前, 王楠, 刘世民, 崔云先, 马艳平, 丁万昱, 巨东英

Influence of low-energy ammonia ion/group diffusion on electrical properties of indium tin oxide film

Zhao Shi-Ping, Zhang Xin, Liu Zhi-Hui, Wang Quan, Wang Hua-Lin, Jiang Wei-Wei, Liu Chao-Qian, Wang Nan, Liu Shi-Min, Cui Yun-Xian, Ma Yan-Ping, Ding Wan-Yu, Ju Dong-Ying
PDF
HTML
导出引用
  • 有机-无机杂化甲氨铅碘类钙钛矿太阳能电池在制备及使用过程中, 甲氨铅碘层中的甲基铵离子易分解为甲基离子/基团和氨离子/基团, 其中氨离子/基团可以扩散进入铟锡氧化物(indium tin oxide, ITO)透明电极层, 并影响ITO的电学性质. 本文通过低能氨离子束与ITO薄膜表面相互作用, 研究低能氨离子/基团在ITO薄膜表面扩散过程, 及其对ITO薄膜电学性质的影响规律. 研究结果表明, 低能氨离子/基团在ITO薄膜表面扩散过程中, 主要与ITO晶格中的O元素结合形成In/Sn—O—N键. ITO不同晶面的O元素含量不同, 低能氨离子/基团能够在无择优ITO薄膜表面的各个晶面进行扩散, 因此将严重影响其电学性质, 导致无择优ITO薄膜电阻率增加约6个数量级. 但(100)择优取向ITO薄膜的主晶面为(100)晶面, 最外层由In/Sn元素构成, 不含O元素. 因此(100)择优取向ITO薄膜能够有效地抑制低能氨离子/基团扩散, 并保持原始电学性质. 最终, (100)择优取向ITO薄膜有望成为理想的有机-无机杂化甲氨铅碘类钙钛矿太阳能电池用透明电极层材料.
    In the case of methylammonium lead halide (MAPbH3) perovskite solar cells, the indium tin oxide (ITO) film has been widely used as the transparent electrode. In the preparation process and service process of MAPbH3 perovskite solar cells, the MAPbH3 perovskite layer can decompose into the methyl, amino, methylammonium, halide ion/group, etc. Thus, the diffusion of ammonia ion/group into ITO film is inevitable, which can seriously deteriorate the electrical property of ITO transparent electrode. In this study, the ITO films with and without (100) preferred orientation are bombarded by a low-energy ammonia (NHx) ion beam. After the bombardment, the electrical properties of ITO film without preferred orientation are deteriorated seriously, especially for carrier concentration, which is deteriorated down to an extent of about 5–6 orders of magnitude. The bombardment of low-energy NHx ion/group has little influence on the electrical properties of ITO film with (100) preferred orientation. Such phenomena can be explained by the following reasons. Based on XPS measurement results, the low-energy NHx ion/group diffuses into the ITO film surface after the bombardment. In the diffusion process, the low-energy NHx ion/group is mainly bonded with O in ITO lattice, which results in the formation of In/Sn—O—N bond. Based on the crystal structure of ITO, the (100) lattice of ITO consists of In/Sn, and the calculated value of surface energy $ {\gamma }_{\left\{100\right\}/\left\{010\right\}/\left\{001\right\}} $ = 1.76 J/m2. While the (110) and (111) lattices of ITO consist of In/Sn/O, in which the O atom percent on (110) and (111) lattices are 56 at.% and 25 at.% respectively. Besides, the calculated values of surface energy $ {\gamma }_{\left\{110\right\}/\left\{101\right\}/\left\{011\right\}} $ and $ {\gamma }_{\left\{111\right\}} $ are 1.07 and 0.89 J/m2, respectively. Combining the XPS measurement results and crystal structure of ITO, it can be understood that in the diffusion process of low-energy NHx ion/group into ITO film without preferred orientation, lots of In/Sn—O—N bonds are formed in the ITO lattices, which are rich in O and have lower surface energy $ \gamma $. Then, after the low-energy NHx ion/group bombardment, the electrical properties of ITO film without preferred orientation are deteriorated seriously. On the contrary, because of the absence of O and the highest surface energy $ \gamma $, it is hard for the low-energy NHx ion/group to diffuse into ITO (100) lattice. Then, after the low-energy NHx ion/group bombardment, the electrical properties of ITO film with (100) preferred orientation have little change. With all results, the ITO film with (100) preferred orientation can be an ideal candidate for transparent electrode in MAPbH3 perovskite solar cells.
      通信作者: 丁万昱, dwysd@djtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51772038, 52072056, 51761010)、辽宁省-沈阳材料科学国家研究中心联合研发基金(批准号: 2019JH3, 30100027)、海南省特种玻璃重点实验室开放课题、辽宁省教育厅项目(批准号: JDL2019020, JDL2017002, JDL2017005)和辽宁省自然科学基金计划指导计划 (批准号: 2019-ZD-0091, 2019-ZD-0096, 2019-ZD-0097, 2019-ZD-0114)资助的课题
      Corresponding author: Ding Wan-Yu, dwysd@djtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772038, 52072056, 51761010), the Joint Research Fund of the Liaoning-Shenyang National Laboratory for Materials Science, China (Grant Nos. 2019JH3, 30100027), the Open Fund Project of the Hainan Province Key Laboratory of Special Glass of China, the Projects Funded by Liaoning Province Education Department, China (Grant Nos. JDL2019020, JDL2017002, JDL2017005), and the Guiding Projects of the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2019-ZD-0091, 2019-ZD-0096, 2019-ZD-0097, 2019-ZD-0114)
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [3]

    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J 2019 Nature 567 511Google Scholar

    [4]

    National Renewable Energy Laboratory (NREL), Best research cell efficiencies, https://www.nrel.gov/pv [2020-04-25]

    [5]

    Tan H R, Jain A, Voznyy O, Lan X Z, Arquer de F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [6]

    王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东 2019 物理学报 68 158401Google Scholar

    Wang Y B, Cui D Y, Zhang C Y, Han L Y, Yang X D 2019 Acta Phys. Sin. 68 158401Google Scholar

    [7]

    Ono L K, Juarez-Perez E J, Qi Y B 2017 ACS Appl. Mater. Interfaces 9 30197Google Scholar

    [8]

    Asghar M I, Zhang J, Wang H, Lund P D 2017 Renewable Sustainable Energy Rev. 77 131Google Scholar

    [9]

    张钰, 周欢萍 2019 物理学报 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [10]

    Zhao S, Lü Z, Guo X, Liu C, Wang H, Jiang W, Liu S, Wang N, Cui Y, Ding W, Han B, Ju D 2018 Materials 11 01991Google Scholar

    [11]

    Shen L H, Liu J, Lü W, Wu L J, Qi D L, Zhou Y W, Lei W W 2019 Appl. Surf. Sci. 476 418Google Scholar

    [12]

    Liu H Y, Avrutin V, Izyumskaya N, Ozgur U, Morkoc H 2010 Superlattices Microstruct. 48 458Google Scholar

    [13]

    Lü Z X, Liu J D, Wang D Y, Tao H L, Chen W C, Sun H T, He Y F, Zhang X, Qu Z Y, Han Z C, Guo X L, Zhao S P, Cui Y X, Wang H L, Liu S M, Liu C Q, Wang N, Jiang W W, Chai W P, Ding W D 2018 Mater. Chem. Phys. 209 38Google Scholar

    [14]

    Chen W C, Sun H T, Jiang W W, Wang H L, Liu S M, Liu C Q, Wang N, Cui Y X, Chai W P, Ding W Y, Han B 2018 Mater. Lett. 220 8Google Scholar

    [15]

    Beamson G, Briggs D 1992 High Resolution XPS of Organic Polymers: the Scienta ESCA3000 database (New York: Wiley) pp53−277

    [16]

    Moulder J F, Stickle W F, Sobol P E, Bomben K D 1995 Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie: Physical Electronics Inc.) pp29−198

    [17]

    Barquinha P, Martins R, Pereira L, Fortunato E 2012 Transparent Oxide Electronics: From Materials to Devices (West Sussex: John Wiley & Sons, Ltd.) p12

    [18]

    Levy D, Castellón E 2018 Transparent Conductive Materials: From Materials via Synthesis and Characterization to Applications (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p57

    [19]

    Lee H C, Park O O 2004 Vacuum 75 275Google Scholar

    [20]

    Mei F, Yuan T, Li R, Qin K, Huang J 2018 J. Mater. Sci.- Mater. Electron. 29 14620Google Scholar

    [21]

    Lüth H 2015 Solid Surfaces, Interfaces and Thin Films (6th Ed.) (New York: Springer-Verlag) pp271−315

    [22]

    吴自勤, 王兵, 孙霞 2017 薄膜生长(第二版) (北京: 科学出版社) 第105−124页

    Wu Z Q, Wang B, Sun X 2017 The Film Growth (2nd Ed.) (Beijing: Science Press) pp105−124 (in Chinese)

    [23]

    Villars P 1997 Pearson’s Handbook Desk Edition: Crystallographic Data for Intermetallic Phases (Ohio: ASM International) p2195

    [24]

    Zhang S, Dong D D, Wang Z J, Dong C, Häussler P 2018 Sci. China Mater. 61 409Google Scholar

    [25]

    蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏 2018 物理学报 67 180201Google Scholar

    Cai X Y, Wang X W, Zhang Y P, Wang D K, Fang X, Fang D, Wang X H, Wei Z P 2018 Acta Phys. Sin. 67 180201Google Scholar

    [26]

    Liu H, Zhang Y, Zhang X, Wang Q, Wang H L, Zhang S, Ma Y P, Cui Y X, Ding W Y, Dong C 2020 J. Alloys Compd. 836 155514Google Scholar

    [27]

    Kittel C 2005 Introduction to Solid State Physics (8th Ed.) (Hoboken: John Wiley & Sons, Inc.) p374

    [28]

    Hofmann P 2015 Solid State Physics: An Introduction (2nd Ed.) (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p285

    [29]

    Zhang K H L, Walsh A, Catlow C R A, Lazarov V K, Egdell R G 2010 Nano Lett. 10 3740Google Scholar

    [30]

    蒋行, 周玉荣, 刘丰珍, 周玉琴 2018 物理学报 67 177802Google Scholar

    Jiang H, Zhou Y R, Liu F Z, Zhou Y Q 2018 Acta Phys. Sin. 67 177802Google Scholar

    [31]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (2nd Ed.) (Hoboken: Wiley-Interscience) pp107−215

    [32]

    汤玉寅, 王浪平 2012 等离子体浸泡式离子注入与沉积技术 (北京: 国防工业出版社) 第21−54页

    Tang Y Y, Wang L P 2012 Plasma Immersion Ion Implantation and Deposition Technique, (Beijing: National Defense Industry Press) pp21−54 (in Chinese)

  • 图 1  原始ITO薄膜XRD谱线

    Fig. 1.  XRD patterns of original ITO films.

    图 2  与低能NHx离子/基团相互作用前后ITO薄膜的电学性质 (a) 电阻率; (b) 载流子浓度; (c) 载流子迁移率

    Fig. 2.  The electronic property of ITO films before and after low-energy NHx ion/group bombardment: (a) Resistivity; (b) carrier concentration; (c) carrier mobility.

    图 3  高分辨XPS谱 (a) ITO薄膜1与低能NHx离子/基团相互作用前的N 1s峰; (b) ITO薄膜1—4与低能NHx离子/基团相互作用后的N 1s峰; (c) ITO薄膜1与低能NHx离子/基团相互作用前的O 1s峰; (d) ITO薄膜1—4与低能NHx离子/基团相互作用后的O 1s峰

    Fig. 3.  High-resolution XPS spectrum: (a) N 1s for ITO film a before low-energy NHx ion/group bombardment; (b) O 1s for ITO film a before low-energy NHx ion/group bombardment; (c) N 1s for ITO films 1 to 4 bombarded by low-energy NHx ion/group; (d) O 1s for ITO films 1 to 4 bombarded by low-energy NHx ion/group.

    图 4  ITO薄膜1与低能NHx离子/基团相互作用后O 1s高分辨XPS谱Gaussian拟合结果

    Fig. 4.  Gaussian peak fitting procedure applied to O 1s high-resolution XPS spectrum of ITO film 1 bombarded by low-energy NHx ion/group.

    图 5  N元素原子百分比, M—O—N化学键占N 总化学键和O总化学键的百分比

    Fig. 5.  Atomic percentage of N, as well as percentage of M—O—N bond from all N bonds and O bonds, respectively.

    图 6  In2O3晶体结构示意图 (a) In2O3原胞; (b) In2O3 (100)/(010)/(001)晶面; (c) In2O3 (110) (101)/(011)晶面; (d) In2O3 (111)晶面

    Fig. 6.  Schematic illustration of In2O3 unit cell: (a) Primitive unit cell of In2O3; (b) schematic illustration of side view (100) surface; (c) schematic illustration of side view (110) surface; (d) schematic illustration of side view (111) surface.

    表 1  ITO薄膜1—4的制备参数

    Table 1.  The detailed deposition parameters for ITO film 1—4.

    沉积参数数值
    Base pressure/Pa1.0 × 10–3
    Flow rate of Ar/sccm20
    Distance between target and substrate/cm12
    Pulse frequency/kHz100
    Reverse time/μs1
    Sputtering power density/W·cm–22 (Film 1)
    4 (Film 2)
    6 (Film 3)
    8 (Film 4)
    Working pressure/Pa0.6
    下载: 导出CSV

    表 2  ITO薄膜1—4的(222)x系数、(100)x系数和(100)取向比重系数

    Table 2.  The coefficient of (222)x, (100)x, and (100) lattice plane proportion of ITO film 1–4.

    (222)x系数(100)x系数(100)取向比重系数
    ITO film 11.001.001.00
    ITO film 20.672.784.15
    ITO film 30.413.127.61
    ITO film 40.183.0817.11
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [3]

    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J 2019 Nature 567 511Google Scholar

    [4]

    National Renewable Energy Laboratory (NREL), Best research cell efficiencies, https://www.nrel.gov/pv [2020-04-25]

    [5]

    Tan H R, Jain A, Voznyy O, Lan X Z, Arquer de F P G, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [6]

    王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东 2019 物理学报 68 158401Google Scholar

    Wang Y B, Cui D Y, Zhang C Y, Han L Y, Yang X D 2019 Acta Phys. Sin. 68 158401Google Scholar

    [7]

    Ono L K, Juarez-Perez E J, Qi Y B 2017 ACS Appl. Mater. Interfaces 9 30197Google Scholar

    [8]

    Asghar M I, Zhang J, Wang H, Lund P D 2017 Renewable Sustainable Energy Rev. 77 131Google Scholar

    [9]

    张钰, 周欢萍 2019 物理学报 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [10]

    Zhao S, Lü Z, Guo X, Liu C, Wang H, Jiang W, Liu S, Wang N, Cui Y, Ding W, Han B, Ju D 2018 Materials 11 01991Google Scholar

    [11]

    Shen L H, Liu J, Lü W, Wu L J, Qi D L, Zhou Y W, Lei W W 2019 Appl. Surf. Sci. 476 418Google Scholar

    [12]

    Liu H Y, Avrutin V, Izyumskaya N, Ozgur U, Morkoc H 2010 Superlattices Microstruct. 48 458Google Scholar

    [13]

    Lü Z X, Liu J D, Wang D Y, Tao H L, Chen W C, Sun H T, He Y F, Zhang X, Qu Z Y, Han Z C, Guo X L, Zhao S P, Cui Y X, Wang H L, Liu S M, Liu C Q, Wang N, Jiang W W, Chai W P, Ding W D 2018 Mater. Chem. Phys. 209 38Google Scholar

    [14]

    Chen W C, Sun H T, Jiang W W, Wang H L, Liu S M, Liu C Q, Wang N, Cui Y X, Chai W P, Ding W Y, Han B 2018 Mater. Lett. 220 8Google Scholar

    [15]

    Beamson G, Briggs D 1992 High Resolution XPS of Organic Polymers: the Scienta ESCA3000 database (New York: Wiley) pp53−277

    [16]

    Moulder J F, Stickle W F, Sobol P E, Bomben K D 1995 Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie: Physical Electronics Inc.) pp29−198

    [17]

    Barquinha P, Martins R, Pereira L, Fortunato E 2012 Transparent Oxide Electronics: From Materials to Devices (West Sussex: John Wiley & Sons, Ltd.) p12

    [18]

    Levy D, Castellón E 2018 Transparent Conductive Materials: From Materials via Synthesis and Characterization to Applications (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p57

    [19]

    Lee H C, Park O O 2004 Vacuum 75 275Google Scholar

    [20]

    Mei F, Yuan T, Li R, Qin K, Huang J 2018 J. Mater. Sci.- Mater. Electron. 29 14620Google Scholar

    [21]

    Lüth H 2015 Solid Surfaces, Interfaces and Thin Films (6th Ed.) (New York: Springer-Verlag) pp271−315

    [22]

    吴自勤, 王兵, 孙霞 2017 薄膜生长(第二版) (北京: 科学出版社) 第105−124页

    Wu Z Q, Wang B, Sun X 2017 The Film Growth (2nd Ed.) (Beijing: Science Press) pp105−124 (in Chinese)

    [23]

    Villars P 1997 Pearson’s Handbook Desk Edition: Crystallographic Data for Intermetallic Phases (Ohio: ASM International) p2195

    [24]

    Zhang S, Dong D D, Wang Z J, Dong C, Häussler P 2018 Sci. China Mater. 61 409Google Scholar

    [25]

    蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏 2018 物理学报 67 180201Google Scholar

    Cai X Y, Wang X W, Zhang Y P, Wang D K, Fang X, Fang D, Wang X H, Wei Z P 2018 Acta Phys. Sin. 67 180201Google Scholar

    [26]

    Liu H, Zhang Y, Zhang X, Wang Q, Wang H L, Zhang S, Ma Y P, Cui Y X, Ding W Y, Dong C 2020 J. Alloys Compd. 836 155514Google Scholar

    [27]

    Kittel C 2005 Introduction to Solid State Physics (8th Ed.) (Hoboken: John Wiley & Sons, Inc.) p374

    [28]

    Hofmann P 2015 Solid State Physics: An Introduction (2nd Ed.) (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p285

    [29]

    Zhang K H L, Walsh A, Catlow C R A, Lazarov V K, Egdell R G 2010 Nano Lett. 10 3740Google Scholar

    [30]

    蒋行, 周玉荣, 刘丰珍, 周玉琴 2018 物理学报 67 177802Google Scholar

    Jiang H, Zhou Y R, Liu F Z, Zhou Y Q 2018 Acta Phys. Sin. 67 177802Google Scholar

    [31]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (2nd Ed.) (Hoboken: Wiley-Interscience) pp107−215

    [32]

    汤玉寅, 王浪平 2012 等离子体浸泡式离子注入与沉积技术 (北京: 国防工业出版社) 第21−54页

    Tang Y Y, Wang L P 2012 Plasma Immersion Ion Implantation and Deposition Technique, (Beijing: National Defense Industry Press) pp21−54 (in Chinese)

  • [1] 蒋行, 周玉荣, 刘丰珍, 周玉琴. 后退火处理对铟锡氧化物表面等离激元共振特性的影响. 物理学报, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [2] 蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏. 铟锡氧化物薄膜表面等离子体损耗降低的研究. 物理学报, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [3] 王晓媛, 赵丰鹏, 王杰, 闫亚宾. 金属有机框架材料力学、电学及其应变调控特性的第一原理研究. 物理学报, 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
    [4] 张勇, 刘艳, 吕斌, 汤乃云, 王基庆, 张红英. 前端接触势垒高度对非晶硅和微晶硅异质结太阳电池的影响. 物理学报, 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [5] 尹伊, 傅兴海, 张磊, 叶辉. 择优取向MgO缓冲层上制备的硅基Ba0.7Sr0.3TiO3薄膜的结构和性能研究. 物理学报, 2009, 58(7): 5013-5021. doi: 10.7498/aps.58.5013
    [6] 傅兴海, 尹伊, 张磊, 叶辉. 择优取向MgO在Si衬底上的直流溅射制备及其性能表征. 物理学报, 2009, 58(7): 5007-5012. doi: 10.7498/aps.58.5007
    [7] 李跃甫, 叶 辉, 傅兴海. 高择优取向铌酸锶钡薄膜的射频磁控溅射制备. 物理学报, 2008, 57(2): 1229-1235. doi: 10.7498/aps.57.1229
    [8] 符秀丽, 唐为华, 彭志坚. 掺杂水平对ZnO基变阻器电学性能的影响. 物理学报, 2008, 57(9): 5844-5852. doi: 10.7498/aps.57.5844
    [9] 唐利斌, 姬荣斌, 宋立媛, 陈雪梅, 李永亮, 荣百炼, 宋炳文. 有机红外半导体酞菁铒的掺杂及电学性质研究. 物理学报, 2008, 57(11): 7244-7251. doi: 10.7498/aps.57.7244
    [10] 李 微, 敖建平, 何 青, 刘芳芳, 李凤岩, 李长健, 孙 云. 衬底对Cu(In, Ga)Se2薄膜织构的影响. 物理学报, 2007, 56(8): 5009-5012. doi: 10.7498/aps.56.5009
    [11] 邵守福, 郑 鹏, 张家良, 钮效鵾, 王春雷, 钟维烈. CaCu3Ti4O12陶瓷的微观结构和电学性能. 物理学报, 2006, 55(12): 6661-6666. doi: 10.7498/aps.55.6661
    [12] 吴振宇, 杨银堂, 汪家友. 微波电子回旋共振等离子体化学气相淀积法制备非晶氟化碳薄膜的研究. 物理学报, 2006, 55(5): 2572-2577. doi: 10.7498/aps.55.2572
    [13] 郑分刚, 陈建平, 李新碗. (111)择优取向的Pb(Zr0.52Ti0.48)O3铁电薄膜的制备及研究. 物理学报, 2006, 55(6): 3067-3072. doi: 10.7498/aps.55.3067
    [14] 徐晓明, 王 娟, 赵 阳, 张庆瑜. 界面和择优取向对TiN/ZrN纳米多层膜硬度变化的影响. 物理学报, 2006, 55(10): 5380-5385. doi: 10.7498/aps.55.5380
    [15] 李建康, 姚 熹. 不同衬底上Pb(Zr0.52Ti0.48)O3择优取向铁电薄膜的制备和研究. 物理学报, 2005, 54(6): 2938-2944. doi: 10.7498/aps.54.2938
    [16] 潘梦霄, 曹兴忠, 李养贤, 王宝义, 薛德胜, 马创新, 周春兰, 魏 龙. 氧化钒薄膜微观结构的研究. 物理学报, 2004, 53(6): 1956-1960. doi: 10.7498/aps.53.1956
    [17] 曹晓燕, 叶 辉, 邓年辉, 郭 冰, 顾培夫. 高择优取向硅基含钾铌酸锶钡(K:SBN)薄膜的制备与性能. 物理学报, 2004, 53(7): 2363-2367. doi: 10.7498/aps.53.2363
    [18] 李明德, 王忠兵, 杨宏顺, 阮可青, 曹烈兆, 陈祖耀. 在氧-水蒸气存在下单相Sr2(Gd,Ce)2Cu2RuO10的合成及其电学性质. 物理学报, 2003, 52(10): 2596-2600. doi: 10.7498/aps.52.2596
    [19] 胡深洋, 折晓黎, 李玉兰. 不同应力场中马氏体形核的择优取向. 物理学报, 1996, 45(2): 339-344. doi: 10.7498/aps.45.339
    [20] 郭常霖, 吴毓琴. 层状结构铁电材料热压择优取向度的X射线测定法. 物理学报, 1980, 29(12): 1640-1644. doi: 10.7498/aps.29.1640
计量
  • 文章访问数:  6230
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-07
  • 修回日期:  2020-08-06
  • 上网日期:  2020-11-19
  • 刊出日期:  2020-12-05

/

返回文章
返回