搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变化静电场的非接触式摩擦纳米发电机设计与研究

曹杰 顾伟光 曲召奇 仲艳 程广贵 张忠强

引用本文:
Citation:

基于变化静电场的非接触式摩擦纳米发电机设计与研究

曹杰, 顾伟光, 曲召奇, 仲艳, 程广贵, 张忠强

Design and research of non-contact triboelectric nanogenerator based on changing electrostatic field

Cao Jie, Gu Wei-Guang, Qu Zhao-Qi, Zhong Yan, Cheng Guang-Gui, Zhang Zhong-Qiang
PDF
HTML
导出引用
  • 基于接触生电与静电感应原理的摩擦纳米发电机(TENG)及其自供能传感器在新能源和物联网等领域有重要的应用前景. 存在电负性差异的聚合物材料在接触分离过程中, 由于电子的转移, 在聚合物周围空间会产生变化的静电场, 已有的TENG研究中, 主要利用垂直于摩擦层和电极层平面的场强产生静电感应, 忽略了聚合物周边的电场效应. 根据静电感应原理, 处于电场中的导体其内部电荷会重新分布, 这为导体在与摩擦材料不接触的情况下导体表面产生感应电信号提供了途径. 本文设计了一种利用摩擦层周围变化静电场的非接触式摩擦纳米发电机(NC-TENG), 研究了硅胶薄膜和丁腈橡胶薄膜在接触分离过程中, 导体与摩擦材料的距离、导体感应面积尺寸及导体相对于摩擦材料所处方位等参数对感应电输出性能的影响. 结果表明, 在与摩擦材料完全分离的情况下, NC-TENG可以产生稳定的电信号输出. NC-TENG的感应电压随着导体与摩擦材料距离的增大而减小, 随着导体感应面积的增大而逐渐增大, 对于尺寸为30 mm × 30 mm的摩擦材料, 导体在面积为60 mm × 45 mm时NC-TENG的电输出趋于稳定, 产生约13 V的开路电压. 此外, 导体相对于摩擦材料所处的方位对感应电输出也具有显著的影响. 本文设计的NC-TENG提供了一种新颖的电输出产生模式, 为接下来对TENG的研究及自供能传感器的应用提供了更多可能性.
    Triboelectric nanogenerator (TENG) and its self-powered sensor based on the principles of contact electricity generation and electrostatic induction have important application prospects in the fields of new energy and internet of things (IoT). In the contact separation process of polymer materials with different electronegativity values, due to the transfer of electrons, a changing electrostatic field will be generated in the space around the polymer. In the existing TENG research, the field strength perpendicular to the plane of the friction layer and the electrode layer is mainly used to generate electrostatic induction, and the electric field effect around the polymer is ignored. According to the principle of electrostatic induction, the internal charge of the conductor in the electric field will be redistributed, which provides a way for the conductor to generate an induced electrical signal on the surface of the conductor without contacting the friction material. In this paper, we design a non-contact triboelectric nanogenerator (NC-TENG) based on changing electrostatic field. The influence of the distance between the conductor and the friction material, the induction area of the conductor and the position of the conductor relative to the friction material on the induced electrical output performance are studied when silicone rubber and nitrile rubber are used as a friction material. The results show that the NC-TENG can produce a stable electrical signal output when the conductor is completely separated from the friction material. The induced voltage of NC-TENG decreases with the increase of the distance between the conductor and the friction material, and gradually increases with the increase of the conductor's induction area. For the friction material with a size of 30 mm × 30 mm, the electrical output of NC-TENG tends to be stable when its conductor area is 60 mm × 45 mm. In addition, the different orientation of the conductor relative to the friction material also has a significant effect on the induced electrical output. The NC-TENG designed in this paper provides a novel electrical output generation mode, which provides a higher possibility for the subsequent research on TENG and the application of self-powered sensors.
      通信作者: 程广贵, ggcheng@ujs.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51675236) 资助的课题
      Corresponding author: Cheng Guang-Gui, ggcheng@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51675236)
    [1]

    Yin E, Li Q, Xuan Y 2019 Appl. Energy 236 560Google Scholar

    [2]

    Bu L, Chen Z, Chen Z, Qin L, Yang F, Xu K, Han J, Wang X 2020 Nano Energy 70 104500Google Scholar

    [3]

    Xing F, Jie Y, Cao X, Li T, Wang N 2017 Nano Energy 42 138Google Scholar

    [4]

    Zhong W, Xu L, Wang H, Li D, Wang Z 2019 Nano Energy 66 104108Google Scholar

    [5]

    Liu X, Cheng K, Cui P, Qi H, Qin H, Gu G, Shang W, Wang S, Cheng G, Du Z 2019 Nano Energy 66 104188Google Scholar

    [6]

    Cheng G, Lin Z, Du Z, Wang Z 2014 ACS Nano 8 1932Google Scholar

    [7]

    Fan F, Tian Z, Wang Z 2012 Nano Energy 1 328Google Scholar

    [8]

    Chung J, Lee S, Yong H, Moon H, Choi D, Lee S 2016 Nano Energy 20 84Google Scholar

    [9]

    Yang W, Wang X, Li H, Wu J, Hu Y 2018 Nano Energy 51 241Google Scholar

    [10]

    Seol M, Han J, Moon D, Yoon K, Hwang C, Meyyappan M 2018 Nano Energy 44 82Google Scholar

    [11]

    Jing Q, Zhu G, Bai P, Xie Y, Chen J, Han R, Wang Z 2014 ACS Nano 8 3836Google Scholar

    [12]

    Gogurla N, Roy B, Park J, Kim S 2019 Nano Energy 62 674Google Scholar

    [13]

    Paosangthong W, Wagih M, Torah R, Beeby S 2019 Nano Energy 66 104148Google Scholar

    [14]

    Xi F, Pang Y, Liu G, Wang S, Li W, Zhang C, Wang Z 2019 Nano Energy 61 1Google Scholar

    [15]

    Zhang Z, He J, Wen T, Zhai C, Han J, Mu J, Jia W, Zhang B, Zhang W, Chou X, Xue C 2017 Nano Energy 33 88Google Scholar

    [16]

    Kim W, Bhatia D, Jeong S, Choi D 2019 Nano Energy 56 307Google Scholar

    [17]

    吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 物理学报 68 190201Google Scholar

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sin. 68 190201Google Scholar

    [18]

    Liu X, Zhao K, Yang Y 2018 Nano Energy 53 622Google Scholar

    [19]

    Kim D, Tcho I, Choi Y 2018 Nano Energy 52 256Google Scholar

    [20]

    Lee J, Kim S, Kim T, Khan U, Kim S 2019 Nano Energy 58 579Google Scholar

    [21]

    Yang X, Chan S, Wang L, Daoud W 2018 Nano Energy 44 388Google Scholar

    [22]

    Cui P, Wang J, Xiong J, Li S, Zhang W, Liu X, Gu G, Guo J, Zhang B, Cheng G, Du Z 2020 Nano Energy 71 104646Google Scholar

    [23]

    Zhang R, Hummelgård M, Örtegren J, Olsen M, Andersson H, Olin H 2019 Nano Energy 57 279Google Scholar

    [24]

    Xia K, Zhu Z, Zhang H, Du C, Fu J, Xu Z 2019 Nano Energy 56 400Google Scholar

    [25]

    Lin H, Liu Y, Chen S, Xu Q, Wang S, Hu T, Pan P, Wang Y, Zhang Y, Li N, Li Y, Ma Y, Xie Y, Wang L 2019 Nano Energy 65 103944Google Scholar

    [26]

    Lim G, Kwak S, Kwon N, Kim T, Kim H, Kim S, Kim S, Lim B 2017 Nano Energy 42 300Google Scholar

    [27]

    Feng Y, Huang X, Liu S, Guo W, Li Y, Wu H 2019 Nano Energy 62 197Google Scholar

    [28]

    Meng X, Cheng Q, Jiang X, Fang Z, Chen X, Li S, Li C, Sun C, Wang W, Wang Z 2018 Nano Energy 51 721Google Scholar

    [29]

    Wu C, Ding W, Liu R, Wang J, Wang A, Wang J, Li S, Zi Y, Wang Z 2018 Mater. Today 21 216Google Scholar

    [30]

    Chen J, Pu X, Guo H, Tang Q, Feng L, Wang X, Hu C 2018 Nano Energy 43 253Google Scholar

    [31]

    Zhang W, Wang P, Sun K, Wang C, Diao D 2019 Nano Energy 56 277Google Scholar

    [32]

    Heo D, Kim T, Yong H, Yoo K, Lee S 2018 Nano Energy 50 1Google Scholar

    [33]

    Zhao K, Gu G, Zhang Y, Zhang B, Yang F, Zhao L, Zheng M, Cheng G, Du Z 2018 Nano Energy 53 898Google Scholar

    [34]

    Liu D, Yin X, Guo H, Zhou L, Li X, Zhang C, Wang J, Wang Z 2019 Sci. Adv. 005 6437Google Scholar

    [35]

    Li S, Liu D, Zhao Z, Zhou L, Yin X, Li X, Gao Y, Zhang C, Zhang Q, Wang J, Wang Z 2020 ACS Nano 14 2475Google Scholar

    [36]

    Jiang T, Chen X Y, Yang K D, Han C B, Tang W, Wang Z L 2016 Nano Res. 009 1057Google Scholar

    [37]

    程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Pesika N S, 张忠强, 郭立强, 王莹 2016 物理学报 65 060201Google Scholar

    Cheng G G, Zhang W, Fang J, Jiang S Y, Ding J N, Pesika N S, Zhang Z Q, Guo L Q, Wang Y 2016 Acta Phys. Sin. 65 060201Google Scholar

    [38]

    王中林, 林龙, 陈俊, 牛思淼, 訾云龙 2017 摩擦纳米发电机 (北京: 科学出版社) 第14−15页

    Wang Z L, Lin L, Chen J, Niu S M, Zi Y L 2017 Triboelectric Nanogenerator (Beijing: Science Press) pp14−15 (in Chinese)

  • 图 1  (a) NC-TENG装置3D示意图; (b) NC-TENG实物图

    Fig. 1.  (a) 3D schematic of NC-TENG; (b) physical picture of NC-TENG.

    图 2  输出性能测试装置示意图

    Fig. 2.  Schematic diagram of the output performance test.

    图 3  电场的简要描述 (a)电场的方向以及电场强度的判断; (b)静电感应原理图

    Fig. 3.  A brief description of the electric field, including: (a) The direction of the electric field and the judgment of the electric field strength; (b) the principle diagram of electrostatic induction.

    图 4  垂直接触TENG的V-Q-x模型

    Fig. 4.  V-Q-x model of vertical contact TENGs.

    图 5  不同分离距离的电势分布图 (a) d = 1 mm; (b) d = 4 mm; (c) d = 7 mm; (d) d = 10 mm

    Fig. 5.  The potential distribution picture with different distance: (a) d = 1 mm; (b) d = 4 mm; (c) d = 7 mm; (d) d = 10 mm.

    图 6  基于变化静电场的NC-TENG工作原理图 (i)初始状态, 丁腈橡胶与硅胶刚接触; (ii)丁腈橡胶与硅胶逐渐分离, 丁腈橡胶和硅胶表面所带静电荷产生静电场; (iii)丁腈橡胶和硅胶分离到最大距离, 此时丁腈橡胶和硅胶之间电势差达到最大; (iv)丁腈橡胶和硅胶分离距离逐渐减小, 彼此之间的电势差也在减小

    Fig. 6.  Working principle diagram of NC-TENG based on changing electrostatic field: (i) Initial state, nitrile rubber and silicone rubber are just in contact; (ii) nitrile rubber and silicone rubber are gradually separated, the surface of nitrile rubber and silicone rubber is charged and generate an electrostatic field; (iii) the nitrile rubber and the silicone rubber are separated to the maximum distance, at this time the potential difference between the nitrile rubber and the silicone rubber reaches the maximum; (iv) the separation distance between the nitrile rubber and the silicone rubber gradually decreases and the potential difference between them is also decreasing.

    图 7  基于变化静化场的NC-TENG结构图及输出测量图 (a) NC-TENG结构图; (b) 距摩擦材料不同距离时的输出性能; (c) 不同导体面积时的输出性能

    Fig. 7.  Structure diagram of NC-TENG based on changing electrostatic field and electrical signal output measurement diagram: (a) Structure diagram of NC-TENG; (b) the output performance of the TENG under different distance from the friction material; (c) the output performance of the TENG under different conductor area.

    图 8  基于变化静电场的NC-TENG电信号输出与导体所处方位关系图 (a)导体处于硅胶正上方和丁腈橡胶正下方以及(b)相应的电信号输出; (c)导体距离硅胶/丁腈橡胶15 mm且分别位于硅胶同一平面和丁腈橡胶同一平面以及(d)相应的电信号输出

    Fig. 8.  Research on the relationship between the electrical signal output of the NC-TENG and the position of the conductor: (a) The conductor is directly above the silicone rubber and directly under the nitrile rubber and (b) the corresponding electrical signal output; (c) the conductor is 15 mm away from the silicone/nitrile rubber and is located on the same plane of silicone and nitrile rubber and (d) the corresponding electrical signal output.

  • [1]

    Yin E, Li Q, Xuan Y 2019 Appl. Energy 236 560Google Scholar

    [2]

    Bu L, Chen Z, Chen Z, Qin L, Yang F, Xu K, Han J, Wang X 2020 Nano Energy 70 104500Google Scholar

    [3]

    Xing F, Jie Y, Cao X, Li T, Wang N 2017 Nano Energy 42 138Google Scholar

    [4]

    Zhong W, Xu L, Wang H, Li D, Wang Z 2019 Nano Energy 66 104108Google Scholar

    [5]

    Liu X, Cheng K, Cui P, Qi H, Qin H, Gu G, Shang W, Wang S, Cheng G, Du Z 2019 Nano Energy 66 104188Google Scholar

    [6]

    Cheng G, Lin Z, Du Z, Wang Z 2014 ACS Nano 8 1932Google Scholar

    [7]

    Fan F, Tian Z, Wang Z 2012 Nano Energy 1 328Google Scholar

    [8]

    Chung J, Lee S, Yong H, Moon H, Choi D, Lee S 2016 Nano Energy 20 84Google Scholar

    [9]

    Yang W, Wang X, Li H, Wu J, Hu Y 2018 Nano Energy 51 241Google Scholar

    [10]

    Seol M, Han J, Moon D, Yoon K, Hwang C, Meyyappan M 2018 Nano Energy 44 82Google Scholar

    [11]

    Jing Q, Zhu G, Bai P, Xie Y, Chen J, Han R, Wang Z 2014 ACS Nano 8 3836Google Scholar

    [12]

    Gogurla N, Roy B, Park J, Kim S 2019 Nano Energy 62 674Google Scholar

    [13]

    Paosangthong W, Wagih M, Torah R, Beeby S 2019 Nano Energy 66 104148Google Scholar

    [14]

    Xi F, Pang Y, Liu G, Wang S, Li W, Zhang C, Wang Z 2019 Nano Energy 61 1Google Scholar

    [15]

    Zhang Z, He J, Wen T, Zhai C, Han J, Mu J, Jia W, Zhang B, Zhang W, Chou X, Xue C 2017 Nano Energy 33 88Google Scholar

    [16]

    Kim W, Bhatia D, Jeong S, Choi D 2019 Nano Energy 56 307Google Scholar

    [17]

    吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 物理学报 68 190201Google Scholar

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sin. 68 190201Google Scholar

    [18]

    Liu X, Zhao K, Yang Y 2018 Nano Energy 53 622Google Scholar

    [19]

    Kim D, Tcho I, Choi Y 2018 Nano Energy 52 256Google Scholar

    [20]

    Lee J, Kim S, Kim T, Khan U, Kim S 2019 Nano Energy 58 579Google Scholar

    [21]

    Yang X, Chan S, Wang L, Daoud W 2018 Nano Energy 44 388Google Scholar

    [22]

    Cui P, Wang J, Xiong J, Li S, Zhang W, Liu X, Gu G, Guo J, Zhang B, Cheng G, Du Z 2020 Nano Energy 71 104646Google Scholar

    [23]

    Zhang R, Hummelgård M, Örtegren J, Olsen M, Andersson H, Olin H 2019 Nano Energy 57 279Google Scholar

    [24]

    Xia K, Zhu Z, Zhang H, Du C, Fu J, Xu Z 2019 Nano Energy 56 400Google Scholar

    [25]

    Lin H, Liu Y, Chen S, Xu Q, Wang S, Hu T, Pan P, Wang Y, Zhang Y, Li N, Li Y, Ma Y, Xie Y, Wang L 2019 Nano Energy 65 103944Google Scholar

    [26]

    Lim G, Kwak S, Kwon N, Kim T, Kim H, Kim S, Kim S, Lim B 2017 Nano Energy 42 300Google Scholar

    [27]

    Feng Y, Huang X, Liu S, Guo W, Li Y, Wu H 2019 Nano Energy 62 197Google Scholar

    [28]

    Meng X, Cheng Q, Jiang X, Fang Z, Chen X, Li S, Li C, Sun C, Wang W, Wang Z 2018 Nano Energy 51 721Google Scholar

    [29]

    Wu C, Ding W, Liu R, Wang J, Wang A, Wang J, Li S, Zi Y, Wang Z 2018 Mater. Today 21 216Google Scholar

    [30]

    Chen J, Pu X, Guo H, Tang Q, Feng L, Wang X, Hu C 2018 Nano Energy 43 253Google Scholar

    [31]

    Zhang W, Wang P, Sun K, Wang C, Diao D 2019 Nano Energy 56 277Google Scholar

    [32]

    Heo D, Kim T, Yong H, Yoo K, Lee S 2018 Nano Energy 50 1Google Scholar

    [33]

    Zhao K, Gu G, Zhang Y, Zhang B, Yang F, Zhao L, Zheng M, Cheng G, Du Z 2018 Nano Energy 53 898Google Scholar

    [34]

    Liu D, Yin X, Guo H, Zhou L, Li X, Zhang C, Wang J, Wang Z 2019 Sci. Adv. 005 6437Google Scholar

    [35]

    Li S, Liu D, Zhao Z, Zhou L, Yin X, Li X, Gao Y, Zhang C, Zhang Q, Wang J, Wang Z 2020 ACS Nano 14 2475Google Scholar

    [36]

    Jiang T, Chen X Y, Yang K D, Han C B, Tang W, Wang Z L 2016 Nano Res. 009 1057Google Scholar

    [37]

    程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Pesika N S, 张忠强, 郭立强, 王莹 2016 物理学报 65 060201Google Scholar

    Cheng G G, Zhang W, Fang J, Jiang S Y, Ding J N, Pesika N S, Zhang Z Q, Guo L Q, Wang Y 2016 Acta Phys. Sin. 65 060201Google Scholar

    [38]

    王中林, 林龙, 陈俊, 牛思淼, 訾云龙 2017 摩擦纳米发电机 (北京: 科学出版社) 第14−15页

    Wang Z L, Lin L, Chen J, Niu S M, Zi Y L 2017 Triboelectric Nanogenerator (Beijing: Science Press) pp14−15 (in Chinese)

  • [1] 邓浩程, 李祎, 田双双, 张晓星, 肖淞. 面向高性能摩擦纳米发电机的电介质材料. 物理学报, 2024, 73(7): 070702. doi: 10.7498/aps.73.20240150
    [2] 蓝湾, 迟晨阳, 郭迎春, 杨玉军, 王兵兵. 外加静电场下CO高次谐波谱. 物理学报, 2023, 72(13): 134202. doi: 10.7498/aps.72.20230560
    [3] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能. 物理学报, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [4] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [5] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件. 物理学报, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [6] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [7] 程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S. Pesika, 张忠强, 郭立强, 王莹. 基于织构表面的摩擦静电发电机制备及其输出性能研究. 物理学报, 2016, 65(6): 060201. doi: 10.7498/aps.65.060201
    [8] 谢国锋. 利用溅射原子角分布规律改进平行板静电场法. 物理学报, 2008, 57(3): 1784-1787. doi: 10.7498/aps.57.1784
    [9] 黄仕华, 吴锋民. 外加静电场的聚焦激光脉冲真空加速电子方案. 物理学报, 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [10] 李洪云, 王兵兵, 蒋红兵, 陈 京, 李晓峰, 刘 杰, 龚旗煌, 傅盘铭. 静电场对强激光场非序列双电子电离的影响. 物理学报, 2008, 57(1): 124-131. doi: 10.7498/aps.57.124
    [11] 洪伟毅, 曹 伟, 兰鹏飞, 陆培祥. 静电场对高次谐波时频特性的影响. 物理学报, 2007, 56(11): 6623-6628. doi: 10.7498/aps.56.6623
    [12] 谢国锋, 王德武, 应纯同. 计及溅射损失的平行板静电场法离子引出和收集. 物理学报, 2005, 54(4): 1543-1551. doi: 10.7498/aps.54.1543
    [13] 宋晓鹏, 陈 戎, 包成玉, 王德武. 平行板静电场法离子引出的对称收集. 物理学报, 2005, 54(9): 4198-4202. doi: 10.7498/aps.54.4198
    [14] 许政一, 李铁城, 顾本源. 静电场作用下α一LiIO3单晶中子衍射增强现象的理论解释. 物理学报, 1979, 28(5): 96-106. doi: 10.7498/aps.28.96
    [15] 杨桢, 程玉芬, 牛世文. 静电场作用下TGS单晶在相变点附近中子衍射的增强. 物理学报, 1978, 27(2): 226-228. doi: 10.7498/aps.27.226
    [16] 易孙圣, 梁敬魁. α-LiIO3单晶体在静电场作用下点阵常数的变化. 物理学报, 1978, 27(3): 314-321. doi: 10.7498/aps.27.314
    [17] α-碘酸锂研究小组. 静电场作用下α-碘酸锂单晶中子衍射的增强(Ⅱ). 物理学报, 1976, 25(2): 129-134. doi: 10.7498/aps.25.129
    [18] 麦振洪. 静电场作用下α-碘酸锂单晶的透光异常现象. 物理学报, 1975, 24(6): 385-388. doi: 10.7498/aps.24.385
    [19] 杨桢, 程玉芬, 牛世文, 李荫远. 静电场作用下α-碘酸锂单晶中子衍射的增强. 物理学报, 1975, 24(1): 6-11. doi: 10.7498/aps.24.6
    [20] 金建中. 用固体绝缘材料代替高压气体来绝缘静电发电机的建议. 物理学报, 1956, 12(5): 487-489. doi: 10.7498/aps.12.487
计量
  • 文章访问数:  8352
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-03
  • 修回日期:  2020-08-05
  • 上网日期:  2020-11-23
  • 刊出日期:  2020-12-05

/

返回文章
返回