搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸钡介电调控提升纸基摩擦纳米发电机输出性能

梁帅博 袁涛 邱扬 张震 妙亚宁 韩竞峰 刘秀童 姚春丽

引用本文:
Citation:

钛酸钡介电调控提升纸基摩擦纳米发电机输出性能

梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽

Barium titanate dielectric regulation improved output performance of paper-based triboelectric nanogenerator

Liang Shuai-Bo, Yuan Tao, Qiu Yang, Zhang Zhen, Miao Ya-Ning, Han Jing-Feng, Liu Xiu-Tong, Yao Chun-Li
PDF
HTML
导出引用
  • 摩擦纳米发电机作为一种能够将机械能转换为电能的新型能源转换装置, 自发明以来便引起了广泛关注, 然而其环保性能由于原料来源多为合成高分子材料而受到制约. 采用绿色环保的纤维素材料制备摩擦纳米发电机是解决上述问题的重要方式之一. 本研究以竹纤维素和钛酸钡(BaTiO3)为原料, 结合湿法造纸和掺杂改性制备了纤维素/钛酸钡复合纸, 并将其作为正极摩擦层构建了纸基摩擦纳米发电机(cellulose/barium titanate-triboelectric nanogenerator, C/BT-TENG). 结果表明, BaTiO3的加入显著提升了复合纸的相对介电常数, C/BT-TENG的输出性能随着BaTiO3掺杂量增加而提升, 在4%掺杂量时, C/BT-TENG的开路电压和短路电流达到最大值118.5 V 和13.51 µA, 相比纯纤维素纸作为正极摩擦层时, 分别提升了51.3% 和41.2%. 通过模型法分析了介电调控提升C/BT-TENG输出性能的机理. 此外, C/BT-TENG具有良好的输出性能和工作稳定性, 在负载电阻为5 MΩ时, 其获得最大输出功率密度0.36 W/m2, 表现出良好的应用前景.
    As a new energy conversion device that can convert mechanical energy into electrical energy, triboelectric nanogenerator has attracted extensive attention since its invention. However, its environmental performance is limited because the raw materials are mostly synthetic polymer materials. Using green and environmentally friendly cellulose materials to prepare triboelectric nanogenerators is one of the important ways to solve the above problems. In this study, cellulose/barium titanate composite paper is prepared by using bamboo cellulose and barium carbonate (BaTiO3) as raw materials and combining wet papermaking and doping modification. The paper based triboelectric nanogenerator (C/BT-TENG) is constructed by using the cellulose/barium titanate composite paper as a positive friction layer. The results show that the addition of BaTiO3 significantly improves the relative dielectric constant of the composite paper, and the output performance of C/BT-TENG increases with the augment of BaTiO3 doping amount. When the doping amount is 4%, the open-circuit voltage and short-circuit current of C/BT-TENG reach the maximum values of 118.5 V and 13.51 µA, respectively, which are 51.3% and 41.2% higher than when pure cellulose paper is used as the positive friction layer. The mechanism of dielectric regulation to improve the C/BT-TENG output performance is analyzed by the modeling method. In addition, the C/BT-TENG has a good output performance and operation stability. When the load resistance is 5 MΩ, the maximum output power density of C/BT-TENG reaches 0.36 W/m2, simplying a good application prospect.
      通信作者: 姚春丽, chunliyao2006@163.com
    • 基金项目: 十三五国家重点研发计划(批准号: 2017YFD0600804)、国家自然科学基金(批准号: 31470605)和国家林业局948项目(批准号: 20140436)资助的课题
      Corresponding author: Yao Chun-Li, chunliyao2006@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFD0600804), the National Natural Science Foundation of China (Grant No. 31470605) and the Project 948 of State Forestry Administration, China (Grant No. 20140436).
    [1]

    Meyar-Naimi H, Vaez-Zadeh S 2012 Energ. Policy 43 351Google Scholar

    [2]

    Goldemberg J 2006 Energ. Policy 34 2185Google Scholar

    [3]

    Bai Y X, Shen B Y, Zhang S L, Zhu Z X, Sun S L, Gao J, Li B H, Wang Y, Zhang R F, Wei F 2019 Adv. Mater. 31 1800680Google Scholar

    [4]

    Jie Y, Jia X T, Zou J D, Chen Y D, Wang N, Wang Z L, Cao X 2018 Adv. Energy Mater. 8 1703133

    [5]

    Zi Y L, Wang J, Wang S H, Li S M, Wen Z, Guo H Y, Wang Z L 2016 Nat. Commun. 7 1Google Scholar

    [6]

    Wang Z L 2020 Adv. Energy Mater. 10 2000137Google Scholar

    [7]

    Shang W Y, Gu G Q, Zhang W H, Luo H C, Wang T Y, Zhang B, Guo J M, Cui P, Yang F, Cheng G, Du Z L 2021 Nano Energy 82 105725Google Scholar

    [8]

    Qin H F, Gu G Q, Shang W Y, Luo H C, Zhang W H, Cui P, Zhang B, Guo J M, Cheng G, Du Z L 2020 Nano Energy 68 104372Google Scholar

    [9]

    Qin H F, Cheng G, Zi Y L, Gu G Q, Zhang B, Shang W Y, Yang F, Yang J J, Du Z L, Wang Z L 2018 Adv. Funct. Mater. 28 1805216Google Scholar

    [10]

    Zhang H, Quan L W, Chen J K, Xu C K, Zhang C H, Dong S R, Lu C F, Luo J K 2019 Nano Energy 56 700Google Scholar

    [11]

    Singh M, Sheetal A, Singh H, Sawhney R S, Kaur J 2020 J. Electron. Mater. 49 3409Google Scholar

    [12]

    Kwak S S, Kim S M, Ryu H, Kim J, Khan U, Yoon H J, Jeong Y H, Kim S W 2019 Energy Environ. Sci. 12 3156Google Scholar

    [13]

    Xu G P, Zheng Y B, Feng Y G, Ma S C, Luo N, Feng M, Chen S G, Wang D 2021 Sci. China Technol. Sc. 64 2003Google Scholar

    [14]

    Landauer J, Aigner F, Kuhn M, Foerst P 2019 Adv. Powder Technol. 30 1099Google Scholar

    [15]

    Kang H, Kim H T, Woo H J, Kim H, Kim D H, Lee S, Kim S, Song Y J, Kim S W, Cho J H 2019 Nano Energy 58 227Google Scholar

    [16]

    Chao S, Ouyang H, Jiang D, Fan Y, Li Z 2021 Eco. Mat. 3 e12072Google Scholar

    [17]

    Pang B, Jiang G Y, Zhou J H, Zhu Y, Cheng W K, Zhao D W, Wang K J, Xu G W, Yu H P 2021 Adv. Electron. Mater. 7 2000944Google Scholar

    [18]

    Kim I, Jeon H, Kim D, You J, Kim D 2018 Nano Energy 53 975Google Scholar

    [19]

    Kafy A, Sadasivuni K K, Akther A, Min S K, Kim J 2015 Mater. Lett. 159 20Google Scholar

    [20]

    Darabi S, Hummel M, Rantasalo S, Rissanen M, Mansson I O, Hilke H, Hwang B, Skrifvars M, Hamedi M M, Sixta H, Lund A, Muller C 2020 Acs Appl. Mater. Inter. 12 56403Google Scholar

    [21]

    Yao C H, Hernandez A, Yu Y H, Cai Z Y, Wang X D 2016 Nano Energy 30 103Google Scholar

    [22]

    Diaz A F, Felix-Navarro R M 2004 J. Electrostat. 62 277Google Scholar

    [23]

    Yu A F, Zhu Y X, Wang W, Zhai J Y 2019 Adv. Funct. Mater. 29 1900098Google Scholar

    [24]

    Shao J J, Jiang T, Wang Z L 2020 Sci. China Technol. Sc. 63 1087Google Scholar

    [25]

    Min G, Manjakkal L, Mulvihill D M, Dahiya R S 2020 IEEE Sens. J. 20 6856Google Scholar

    [26]

    Wu C, Kim T W, Choi H Y 2017 Nano Energy 32 542Google Scholar

    [27]

    Wang X Z, Yang B, Liu J Q, Zhu Y B, Yang C S, He Q 2016 Sci. Rep. 6 1Google Scholar

    [28]

    Ba Y Y, Bao J F, Deng H T, Wang Z Y, Li X W, Gong T X, Huang W, Zhang X S 2020 Acs Appl. Mater. Inter. 12 42859Google Scholar

    [29]

    Jia C, Shao Z Q, Fan H Y, Feng R, Wang F J, Wang W J, Wang J Q, Zhang D L, Lü Y Y 2016 Compos. Part A-Appl. S 86 1Google Scholar

    [30]

    Ma M Y, Kang Z, Liao Q L, Zhang Q, Gao F F, Zhao X, Zhang Z, Zhang Y 2018 Nano Res. 11 2951Google Scholar

    [31]

    Li W B, Zhou D, Pang L X, Xu R, Guo H H 2017 J. Mater. Chem. A 5 19607Google Scholar

    [32]

    Zhang X, Lü S S, Lu X C, Yu H, Huang T, Zhang Q H, Zhu M F 2020 Nano Energy 75 104894Google Scholar

    [33]

    Sriphan S, Nawanil C, Vittayakorn N 2018 Ceram. Int. 44 S38Google Scholar

    [34]

    Dudem B, Kim D H, Bharat L K, Yu J S 2018 Appl. Energ. 230 865Google Scholar

    [35]

    Chen J, Guo H Y, He X M, Liu G L, Xi Y, Shi H F, Hu C G 2016 Acs Appl. Mater. Inter. 8 736Google Scholar

    [36]

    Zhang W H, Gu G Q, Qin H F, Li S M, Shang W Y, Wang T Y, Zhang B, Cui P, Guo J M, Yang F, Cheng G, Du Z L 2020 Nano Energy 77 105108Google Scholar

    [37]

    Zhang W H, Gu G Q, Shang W Y, Luo H C, Wang T Y, Zhang B, Cui P, Guo J M, Yang F, Cheng G, Du Z L 2021 Nano Energy 86 106056Google Scholar

    [38]

    Song H M, Yu H W, Zhu L J, Xue L X, Wu D C, Chen H 2017 React. Funct. Polym. 114 110Google Scholar

    [39]

    Xiao S H, Jiang W F 2012 Int. J. Min. Met. Mater. 19 762Google Scholar

    [40]

    Chen H M, Xu Y, Zhang J S, Wu W T, Song G F 2018 Nanoscale Res. Lett. 13 1Google Scholar

    [41]

    Wang Z L 2017 Mater. Today 20 74Google Scholar

    [42]

    Wang Z L, Chen J, Lin L 2015 Energy Environ. Sci. 8 2250Google Scholar

    [43]

    Shi Y X, Wang F, Tian J W, Li S Y, Fu E G, Nie J H, Lei R, Ding Y F, Chen X Y, Wang Z L 2021 Sci. Adv. 7 eabe2943Google Scholar

    [44]

    Nie J H, Ren Z W, Xu L, Lin S Q, Zhan F, Chen X Y, Wang Z L 2020 Adv. Mater. 32 1905696Google Scholar

    [45]

    Li S Y, Fan Y, Chen H Q, Nie J H, Liang Y X, Tao X L, Zhang J, Chen X Y, Fu E G, Wang Z L 2020 Energy Environ. Sci. 13 896Google Scholar

  • 图 1  (a)竹材多级结构示意图; (b) C/BT复合纸制备流程示意图; (c) C/BT-TENG结构示意图

    Fig. 1.  (a) Diagram of hierarchical structure of bamboo; (b) schematic illustration of the preparation of C/BT composite paper; (c) structure diagram of C/BT-TENG.

    图 2  (a) C/BT-4复合纸表面SEM图; (b) BaTiO3与纤维之间的氢键示意图; C/BT-4复合纸表面(c) Ti元素和(d) Ba元素的EDS能谱图

    Fig. 2.  (a) The surface SEM image of C/BT-4 composite paper; (b) diagram of hydrogen bond between BaTiO3 and fiber; EDS spectrum of (c) Ti and (d) Ba on C/BT-4 composite paper surface.

    图 3  (a) PTFE表面SEM图(右上角插图为其光学照片); (b) PTFE的红外光谱图; (c) BaTiO3颗粒的SEM图(右上角插图为其光学照片); (d) BaTiO3的X射线衍射图

    Fig. 3.  (a) The surface SEM image of PTFE (The illustration in the upper right corner is its optical photo); (b) the infrared spectrogram of PTFE; (c) the SEM image of BaTiO3 particles (The illustration in the upper right corner is its optical photo); (d) X-ray diffraction pattern of BaTiO3.

    图 4  不同BaTiO3含量C/BT复合纸的应力-应变曲线

    Fig. 4.  Tensile stress-strain curves of C/BT composite paper with different BaTiO3 content.

    图 5  不同BaTiO3含量C/BT复合纸作为正极摩擦层的C/BT-TENG的(a)开路电压和(b)短路电流; 不同BaTiO3含量C/BT复合纸的(c)相对介电常数和(d)介电损耗角正切随频率的变化情况

    Fig. 5.  (a) Open circuit voltage and (b) short circuit current of C/BT-TENG with C/BT composite paper with different BaTiO3 content as the positive friction layer; frequency dependence of (c) dielectric constant and (d) dielectric loss tangent of C/BT composite paper with different BaTiO3 content.

    图 6  (a) 400倍和(b) 4000倍下C/BT-5复合纸表面SEM图; C/BT-5复合纸表面(c) Ti元素和(d) Ba元素的EDS能谱图

    Fig. 6.  The surface SEM image of (a) low and (b) high magnification showing the C/BT-5 composite paper surface; EDS spectrum of (c) Ti and (d) Ba on C/BT-5 composite paper surface.

    图 7  C/BT-TENG的等效电路模型

    Fig. 7.  Schematic diagram and an equivalent circuit model of the C/BT-TENG.

    图 8  C/BT-TENG在不同大小外力下的(a)开路电压和(b)短路电流; (c) C/BT-TENG的开路电压与外力大小的线性拟合; (d) C/BT-TENG在5000次连续循环工作过程中的输出电压

    Fig. 8.  (a) Open circuit voltage and (b) short circuit current of C/BT-TENG under different external forces; (c) linear fit between open circuit voltage of C/BT-TENG and external force; (d) the output voltage of C/BT-TENG during 5000 continuous cycles.

    图 9  C/BT-TENG在不同外接负载电阻下的(a)输出电压-电流和(b)输出功率

    Fig. 9.  (a) Output voltage-current and (b) output power of C/BT-TENG with external resistances.

    图 10  C/BT-TENG的工作机理示意图

    Fig. 10.  The schematic illustration showing the working mechanism of the C/BT-TENG.

  • [1]

    Meyar-Naimi H, Vaez-Zadeh S 2012 Energ. Policy 43 351Google Scholar

    [2]

    Goldemberg J 2006 Energ. Policy 34 2185Google Scholar

    [3]

    Bai Y X, Shen B Y, Zhang S L, Zhu Z X, Sun S L, Gao J, Li B H, Wang Y, Zhang R F, Wei F 2019 Adv. Mater. 31 1800680Google Scholar

    [4]

    Jie Y, Jia X T, Zou J D, Chen Y D, Wang N, Wang Z L, Cao X 2018 Adv. Energy Mater. 8 1703133

    [5]

    Zi Y L, Wang J, Wang S H, Li S M, Wen Z, Guo H Y, Wang Z L 2016 Nat. Commun. 7 1Google Scholar

    [6]

    Wang Z L 2020 Adv. Energy Mater. 10 2000137Google Scholar

    [7]

    Shang W Y, Gu G Q, Zhang W H, Luo H C, Wang T Y, Zhang B, Guo J M, Cui P, Yang F, Cheng G, Du Z L 2021 Nano Energy 82 105725Google Scholar

    [8]

    Qin H F, Gu G Q, Shang W Y, Luo H C, Zhang W H, Cui P, Zhang B, Guo J M, Cheng G, Du Z L 2020 Nano Energy 68 104372Google Scholar

    [9]

    Qin H F, Cheng G, Zi Y L, Gu G Q, Zhang B, Shang W Y, Yang F, Yang J J, Du Z L, Wang Z L 2018 Adv. Funct. Mater. 28 1805216Google Scholar

    [10]

    Zhang H, Quan L W, Chen J K, Xu C K, Zhang C H, Dong S R, Lu C F, Luo J K 2019 Nano Energy 56 700Google Scholar

    [11]

    Singh M, Sheetal A, Singh H, Sawhney R S, Kaur J 2020 J. Electron. Mater. 49 3409Google Scholar

    [12]

    Kwak S S, Kim S M, Ryu H, Kim J, Khan U, Yoon H J, Jeong Y H, Kim S W 2019 Energy Environ. Sci. 12 3156Google Scholar

    [13]

    Xu G P, Zheng Y B, Feng Y G, Ma S C, Luo N, Feng M, Chen S G, Wang D 2021 Sci. China Technol. Sc. 64 2003Google Scholar

    [14]

    Landauer J, Aigner F, Kuhn M, Foerst P 2019 Adv. Powder Technol. 30 1099Google Scholar

    [15]

    Kang H, Kim H T, Woo H J, Kim H, Kim D H, Lee S, Kim S, Song Y J, Kim S W, Cho J H 2019 Nano Energy 58 227Google Scholar

    [16]

    Chao S, Ouyang H, Jiang D, Fan Y, Li Z 2021 Eco. Mat. 3 e12072Google Scholar

    [17]

    Pang B, Jiang G Y, Zhou J H, Zhu Y, Cheng W K, Zhao D W, Wang K J, Xu G W, Yu H P 2021 Adv. Electron. Mater. 7 2000944Google Scholar

    [18]

    Kim I, Jeon H, Kim D, You J, Kim D 2018 Nano Energy 53 975Google Scholar

    [19]

    Kafy A, Sadasivuni K K, Akther A, Min S K, Kim J 2015 Mater. Lett. 159 20Google Scholar

    [20]

    Darabi S, Hummel M, Rantasalo S, Rissanen M, Mansson I O, Hilke H, Hwang B, Skrifvars M, Hamedi M M, Sixta H, Lund A, Muller C 2020 Acs Appl. Mater. Inter. 12 56403Google Scholar

    [21]

    Yao C H, Hernandez A, Yu Y H, Cai Z Y, Wang X D 2016 Nano Energy 30 103Google Scholar

    [22]

    Diaz A F, Felix-Navarro R M 2004 J. Electrostat. 62 277Google Scholar

    [23]

    Yu A F, Zhu Y X, Wang W, Zhai J Y 2019 Adv. Funct. Mater. 29 1900098Google Scholar

    [24]

    Shao J J, Jiang T, Wang Z L 2020 Sci. China Technol. Sc. 63 1087Google Scholar

    [25]

    Min G, Manjakkal L, Mulvihill D M, Dahiya R S 2020 IEEE Sens. J. 20 6856Google Scholar

    [26]

    Wu C, Kim T W, Choi H Y 2017 Nano Energy 32 542Google Scholar

    [27]

    Wang X Z, Yang B, Liu J Q, Zhu Y B, Yang C S, He Q 2016 Sci. Rep. 6 1Google Scholar

    [28]

    Ba Y Y, Bao J F, Deng H T, Wang Z Y, Li X W, Gong T X, Huang W, Zhang X S 2020 Acs Appl. Mater. Inter. 12 42859Google Scholar

    [29]

    Jia C, Shao Z Q, Fan H Y, Feng R, Wang F J, Wang W J, Wang J Q, Zhang D L, Lü Y Y 2016 Compos. Part A-Appl. S 86 1Google Scholar

    [30]

    Ma M Y, Kang Z, Liao Q L, Zhang Q, Gao F F, Zhao X, Zhang Z, Zhang Y 2018 Nano Res. 11 2951Google Scholar

    [31]

    Li W B, Zhou D, Pang L X, Xu R, Guo H H 2017 J. Mater. Chem. A 5 19607Google Scholar

    [32]

    Zhang X, Lü S S, Lu X C, Yu H, Huang T, Zhang Q H, Zhu M F 2020 Nano Energy 75 104894Google Scholar

    [33]

    Sriphan S, Nawanil C, Vittayakorn N 2018 Ceram. Int. 44 S38Google Scholar

    [34]

    Dudem B, Kim D H, Bharat L K, Yu J S 2018 Appl. Energ. 230 865Google Scholar

    [35]

    Chen J, Guo H Y, He X M, Liu G L, Xi Y, Shi H F, Hu C G 2016 Acs Appl. Mater. Inter. 8 736Google Scholar

    [36]

    Zhang W H, Gu G Q, Qin H F, Li S M, Shang W Y, Wang T Y, Zhang B, Cui P, Guo J M, Yang F, Cheng G, Du Z L 2020 Nano Energy 77 105108Google Scholar

    [37]

    Zhang W H, Gu G Q, Shang W Y, Luo H C, Wang T Y, Zhang B, Cui P, Guo J M, Yang F, Cheng G, Du Z L 2021 Nano Energy 86 106056Google Scholar

    [38]

    Song H M, Yu H W, Zhu L J, Xue L X, Wu D C, Chen H 2017 React. Funct. Polym. 114 110Google Scholar

    [39]

    Xiao S H, Jiang W F 2012 Int. J. Min. Met. Mater. 19 762Google Scholar

    [40]

    Chen H M, Xu Y, Zhang J S, Wu W T, Song G F 2018 Nanoscale Res. Lett. 13 1Google Scholar

    [41]

    Wang Z L 2017 Mater. Today 20 74Google Scholar

    [42]

    Wang Z L, Chen J, Lin L 2015 Energy Environ. Sci. 8 2250Google Scholar

    [43]

    Shi Y X, Wang F, Tian J W, Li S Y, Fu E G, Nie J H, Lei R, Ding Y F, Chen X Y, Wang Z L 2021 Sci. Adv. 7 eabe2943Google Scholar

    [44]

    Nie J H, Ren Z W, Xu L, Lin S Q, Zhan F, Chen X Y, Wang Z L 2020 Adv. Mater. 32 1905696Google Scholar

    [45]

    Li S Y, Fan Y, Chen H Q, Nie J H, Liang Y X, Tao X L, Zhang J, Chen X Y, Fu E G, Wang Z L 2020 Energy Environ. Sci. 13 896Google Scholar

  • [1] 张钰业, 张镱议, 韦文厂, 苏至诚, 兰丹泉, 罗世豪. 纳米氧化锌改性纤维素绝缘纸力学和热学性能的分子动力学模拟. 物理学报, 2024, 73(12): 127701. doi: 10.7498/aps.73.20240208
    [2] 邓浩程, 李祎, 田双双, 张晓星, 肖淞. 面向高性能摩擦纳米发电机的电介质材料. 物理学报, 2024, 73(7): 070702. doi: 10.7498/aps.73.20240150
    [3] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [4] 王闯, 鲍容容, 潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用. 物理学报, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
    [5] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件. 物理学报, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [6] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能. 物理学报, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [7] 曹杰, 顾伟光, 曲召奇, 仲艳, 程广贵, 张忠强. 基于变化静电场的非接触式摩擦纳米发电机设计与研究. 物理学报, 2020, 69(23): 230201. doi: 10.7498/aps.69.20201052
    [8] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件. 物理学报, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [9] 景奇, 李晓娟. 多孔钛酸钡陶瓷制备及其增强的压电灵敏性. 物理学报, 2019, 68(5): 057701. doi: 10.7498/aps.68.20181790
    [10] 孙智征, 荀威, 张加永, 刘传洋, 仲嘉霖, 吴银忠. 钛酸钡的光学性质及其体积效应. 物理学报, 2019, 68(8): 087801. doi: 10.7498/aps.68.20182087
    [11] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [12] 程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S. Pesika, 张忠强, 郭立强, 王莹. 基于织构表面的摩擦静电发电机制备及其输出性能研究. 物理学报, 2016, 65(6): 060201. doi: 10.7498/aps.65.060201
    [13] 刘永广, 康爱国, 张少飞, 侯志文, 刘文斌. 钛酸钡纳米颗粒铁电性临界尺寸的理论分析. 物理学报, 2015, 64(17): 177702. doi: 10.7498/aps.64.177702
    [14] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [15] 王培吉, 周忠祥, 苏 燕, 荣振宇, 赵 朋, 张奉军. 钽掺杂对钛酸钡导热性能影响的研究. 物理学报, 2006, 55(4): 1959-1964. doi: 10.7498/aps.55.1959
    [16] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱. 物理学报, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [17] 李智强, 陆夏莲, 陈敏, 何山, 李景德. 钙钛矿结构中的简谐子软模. 物理学报, 2002, 51(7): 1581-1585. doi: 10.7498/aps.51.1581
    [18] 刘立伟, 王作维, 周鲁卫, 王治金, 高广君, 刘晓军. 微晶纤维素电流变液在挤压流中的粘弹性. 物理学报, 2000, 49(9): 1886-1891. doi: 10.7498/aps.49.1886
    [19] 汪国平, 郭履容, 陈其瑞, 戴朝明, 何龙庆. 重铬酸盐-三醋酸纤维素酯全息材料的红敏性. 物理学报, 1994, 43(10): 1593-1597. doi: 10.7498/aps.43.1593
    [20] 陈茂康. 一种脈流发电机之初记. 物理学报, 1933, 1(1): 87-90. doi: 10.7498/aps.1.87
计量
  • 文章访问数:  6832
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 修回日期:  2021-11-18
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回