搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于休眠机理的三维小基站蜂窝网络能效优化

潘子宇 胡晗 杨洁

引用本文:
Citation:

基于休眠机理的三维小基站蜂窝网络能效优化

潘子宇, 胡晗, 杨洁

Energy efficiency optimization in three-dimensional small cell networks based on dormant strategy

Pan Zi-Yu, Hu Han, Yang Jie
PDF
导出引用
  • 小基站通常部署在写字楼、商贸区等城市密集区域以弥补传统宏基站在覆盖和传输方面的不足.小基站的分布一般是根据高峰时的网络负荷设计的,这必然导致网络负荷较低时的资源浪费.讨论了在平均接入率和信道容量双重约束下基于休眠机理的三维小基站蜂窝网络的能效优化问题.借助泊松点过程理论推导了三维小基站网络下行信道容量和平均接入率的数学表达式.通过分析下行信道容量和平均接入率的单调性得出同时满足传输信道容量和接入率要求的最佳休眠概率.分析了小基站最大用户连接数的最佳值,通过对该参数的合理配置,可以在满足通信指标的前提下最大程度地降低网络能耗.仿真结果表明,设计的基站休眠机理可以使小基站网络的能耗下降约21%.
    Wireless cellular networks all over the world are undergoing a profound transformation evolving from voice-oriented to data networks. Larger coverage area, better service quality, and lower energy cost are the key issues in the deployment of cellular networks. To achieve these goals, small cells, such as the femtocells and picocells, have become an important part of the current 4G and future 5G wireless cellular networks. Generally speaking, small cell networks are deployed according to the peak traffic load, which causes energy waste during low traffic periods. Against this background, energy efficiency optimization has become one of the research hotspots in wireless communications. In this paper, we focus on the energy efficiency problem in small cell networks in which a large number of small cells are spatially deployed in dense urban areas such as office buildings and shopping malls. We optimize the energy efficiency through small cell dormant mechanism under the constraints of average connection ratio (ACR) and average downlink channel capacity. First, we derive the mathematical expressions for average downlink channel capacity and ACR in three-dimensional (3D) small cell networks by Poisson point process (PPP) theory. Second, the monotonicities of channel capacity and ACR are analyzed in detail. Then, based on the results of monotonicity analysis, the optimal small cell dormant probability is calculated to satisfy the constraints of ACR and average downlink channel capacity respectively. Finally, we formulate a network energy consumption minimization problem subject to the constraints of ACR and channel capacity to determine the dormant probability. In addition, we also formulate an optimal maximum connection number of small cells, which minimizes the energy consumption subject to the joint constraints of ACR and channel capacity. Numerical results show that our 3D PPP model is more accurate than the traditional two-dimensional (2D) one in both channel capacity and ACR performance, and that the energy consumption of small cell networks can be reduced by about 21% of the total energy consumption with the dormant strategy in this paper. More importantly, the optimal dormant probability and appropriate configuration of the maximal number of connection can be effectively used to design small cell dormant strategy for 3D small cell networks.
      通信作者: 潘子宇, panziyu@njit.edu.cn
    • 基金项目: 南京工程学院青年基金(批准号:QKJA201505)、南京工程学院平台及实验室专项(批准号:PTKJ201603)、国家自然科学基金青年科学基金(批准号:61401225)和江苏省自然科学基金青年基金(批准号:BK20140894,BK20160781)资助的课题.
      Corresponding author: Pan Zi-Yu, panziyu@njit.edu.cn
    • Funds: Project supported by the Youth Foundation of Nanjing Institute of Technology, China (Grant No. QKJA201505), the Platform and Laboratory of Nanjing Institute of Technology, China (Grant No. PTKJ201603), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61401225), and the Young Scientists Fund of Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20140894, BK20160781).
    [1]

    Jo H, Mun C, Moon J, Yook J 2010 IEEE Trans. Wireless Commun. 8 2977

    [2]

    Jo H, Sang Y, Xia P, Andrews J G 2012 IEEE Trans. Wireless Commun. 11 3484

    [3]

    Soh Y S, Quek T Q S, Kountouris M, Shin H 2013 IEEE J. Sel. Areas Commun. 31 840

    [4]

    Mugume E, So D K C, Alsusa E 2015 IEEE Global Communications Conference, San Diego, December 6-10, 2015 p1

    [5]

    Ashraf L, Boccardi F, Ho L 2011 IEEE Commun. Mag. 49 72

    [6]

    Mugume E, So D K C 2015 IEEE International Conference on Communications, London, June 8-12, 2015 p192

    [7]

    Tsilimantos D, Gorce J M, Altman E 2013 32nd IEEE International Conference on Computer Communications Turin, April 14-19, 2013 p1097

    [8]

    Qu D, Zhou Y, Tian L, Shi J 2016 IEEE Global Communications Conference, Washington DC, December 4-8, 2016 p1

    [9]

    Cao D, Zhou S, Niu Z 2012 IEEE International Conference on Communications, Ottawa, June 10-15, 2012 p4379

    [10]

    Cao D, Zhou S, Niu Z 2013 IEEE Trans. Wireless Commun. 12 4350

    [11]

    Niu Z, Wu Y, Gong J 2010 IEEE Commun. Mag. 48 74

    [12]

    Peng J, Hong P, Xue K 2014 IEEE Commun. Lett. 18 612

    [13]

    Kim J, Jeon W S Jeong D G 2015 IEEE Commun. Lett. 19 641

    [14]

    Dhillon H S, Ganti R K, Baccelli F, Andrews J G 2012 IEEE J. Sel. Areas Commun. 30 550

    [15]

    Pan Z, Zhu Q 2015 IEEE Commun. Lett. 19 831

    [16]

    Omri A, Hasna M O 2016 IEEE International Conference on Communications, Kuala Lumpur, May 23-27, 2016 p1

    [17]

    Parkvall S, Furuskar A, Dahlman E 2011 IEEE Commun. Mag. 49 84

    [18]

    Ferenc J, Neda Z 2007 Physica A 385 518

    [19]

    Ge X, Tu S, Mao G, Wang C 2016 IEEE Wireless Commun. 23 72

    [20]

    Andrews J G, Baccelli F, Ganti R K 2011 IEEE Trans. Commun. 59 3122

    [21]

    Auer G 2011 IEEE Wireless Commun. Mag. 18 40

  • [1]

    Jo H, Mun C, Moon J, Yook J 2010 IEEE Trans. Wireless Commun. 8 2977

    [2]

    Jo H, Sang Y, Xia P, Andrews J G 2012 IEEE Trans. Wireless Commun. 11 3484

    [3]

    Soh Y S, Quek T Q S, Kountouris M, Shin H 2013 IEEE J. Sel. Areas Commun. 31 840

    [4]

    Mugume E, So D K C, Alsusa E 2015 IEEE Global Communications Conference, San Diego, December 6-10, 2015 p1

    [5]

    Ashraf L, Boccardi F, Ho L 2011 IEEE Commun. Mag. 49 72

    [6]

    Mugume E, So D K C 2015 IEEE International Conference on Communications, London, June 8-12, 2015 p192

    [7]

    Tsilimantos D, Gorce J M, Altman E 2013 32nd IEEE International Conference on Computer Communications Turin, April 14-19, 2013 p1097

    [8]

    Qu D, Zhou Y, Tian L, Shi J 2016 IEEE Global Communications Conference, Washington DC, December 4-8, 2016 p1

    [9]

    Cao D, Zhou S, Niu Z 2012 IEEE International Conference on Communications, Ottawa, June 10-15, 2012 p4379

    [10]

    Cao D, Zhou S, Niu Z 2013 IEEE Trans. Wireless Commun. 12 4350

    [11]

    Niu Z, Wu Y, Gong J 2010 IEEE Commun. Mag. 48 74

    [12]

    Peng J, Hong P, Xue K 2014 IEEE Commun. Lett. 18 612

    [13]

    Kim J, Jeon W S Jeong D G 2015 IEEE Commun. Lett. 19 641

    [14]

    Dhillon H S, Ganti R K, Baccelli F, Andrews J G 2012 IEEE J. Sel. Areas Commun. 30 550

    [15]

    Pan Z, Zhu Q 2015 IEEE Commun. Lett. 19 831

    [16]

    Omri A, Hasna M O 2016 IEEE International Conference on Communications, Kuala Lumpur, May 23-27, 2016 p1

    [17]

    Parkvall S, Furuskar A, Dahlman E 2011 IEEE Commun. Mag. 49 84

    [18]

    Ferenc J, Neda Z 2007 Physica A 385 518

    [19]

    Ge X, Tu S, Mao G, Wang C 2016 IEEE Wireless Commun. 23 72

    [20]

    Andrews J G, Baccelli F, Ganti R K 2011 IEEE Trans. Commun. 59 3122

    [21]

    Auer G 2011 IEEE Wireless Commun. Mag. 18 40

  • [1] 周玉媛, 孙超, 谢磊. 基于轨迹泊松多伯努利混合滤波器的浅海匹配场连续跟踪方法. 物理学报, 2023, 72(18): 184301. doi: 10.7498/aps.72.20230124
    [2] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [3] 李妤晨, 陈航宇, 宋建军. 用于提高微波无线能量传输系统接收端能量转换效率的肖特基二极管. 物理学报, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [4] 王娟, 张笑天, 武泽茂, 邓书金, 武海斌. 超冷6Li费米气体的密度涨落和亚泊松分布. 物理学报, 2020, 69(13): 136701. doi: 10.7498/aps.69.20200603
    [5] 延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚. 反馈脉冲棘轮的能量转化效率研究. 物理学报, 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [6] 王倩, 赵江山, 罗时文, 左都罗, 周翊. ArF准分子激光系统的能量效率特性. 物理学报, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [7] 岳晓乐, 徐伟, 张莹, 王亮. 加性和乘性泊松白噪声联合激励下光滑非连续振子的随机响应. 物理学报, 2014, 63(6): 060502. doi: 10.7498/aps.63.060502
    [8] 陈仙, 王炎武, 王晓艳, 安书董, 王小波, 赵玉清. 非晶氧化钛薄膜形成过程中钛离子能量对表面结构影响的机理. 物理学报, 2014, 63(24): 246801. doi: 10.7498/aps.63.246801
    [9] 彭武, 何怡刚, 方葛丰, 樊晓腾. 二维泊松方程的遗传PSOR改进算法. 物理学报, 2013, 62(2): 020301. doi: 10.7498/aps.62.020301
    [10] 王林, 罗振兵, 夏智勋, 刘冰. 等离子体合成射流能量效率及工作特性研究. 物理学报, 2013, 62(12): 125207. doi: 10.7498/aps.62.125207
    [11] 杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 刘腊群, 彭凯, 夏蒙重. 体积产生负氢离子能量沉积及引出效率数值模拟研究. 物理学报, 2012, 61(23): 235201. doi: 10.7498/aps.61.235201
    [12] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件. 物理学报, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [13] 林敏, 张美丽, 黄咏梅. 双稳系统的随机能量共振和作功效率. 物理学报, 2011, 60(8): 080509. doi: 10.7498/aps.60.080509
    [14] 田柳, 狄增如, 姚虹. 权重分布对加权网络效率的影响. 物理学报, 2011, 60(2): 028901. doi: 10.7498/aps.60.028901
    [15] 陈敢新, 张勤远, 赵纯, 石冬梅, 姜中宏. 掺Tm3+和Tm3+/Ho3+共掺碲钨酸盐玻璃中能量转换过程和机理. 物理学报, 2010, 59(2): 1321-1327. doi: 10.7498/aps.59.1321
    [16] 丁凌云, 龚中良, 黄平. 声子摩擦能量耗散机理研究. 物理学报, 2009, 58(12): 8522-8528. doi: 10.7498/aps.58.8522
    [17] 龚中良, 黄 平. 界面摩擦过程非连续能量耗散机理研究. 物理学报, 2008, 57(4): 2358-2362. doi: 10.7498/aps.57.2358
    [18] 许中明, 黄 平. 摩擦微观能量耗散机理的复合振子模型研究. 物理学报, 2006, 55(5): 2427-2432. doi: 10.7498/aps.55.2427
    [19] 刘政威, 阳效良, 肖思国. 提高能量上转换效率的实验探讨. 物理学报, 2001, 50(9): 1795-1779. doi: 10.7498/aps.50.1795
    [20] 胡响明, 彭金生. 量子拍激光:双模亚泊松光. 物理学报, 1998, 47(8): 1296-1303. doi: 10.7498/aps.47.1296
计量
  • 文章访问数:  5848
  • PDF下载量:  331
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-25
  • 修回日期:  2017-08-09
  • 刊出日期:  2017-12-05

/

返回文章
返回