搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LiNbO3晶体中屏蔽光伏孤子自偏转的时空演化与可控因素

李文慧 忽满利 马志博 种兰祥 万云

引用本文:
Citation:

LiNbO3晶体中屏蔽光伏孤子自偏转的时空演化与可控因素

李文慧, 忽满利, 马志博, 种兰祥, 万云

Temporal evolution and controllable factors for self-deflection of screening photovoltaic solitons in LiNbO3 crystal

Li Wen-Hui, Hu Man-Li, Ma Zhi-Bo, Zhong Lan-Xiang, Wan Yun
PDF
导出引用
  • 基于带输运模型理论建立了LiNbO3晶体屏蔽光伏孤子的时空演化动力学方程, 用有限差分方法求解发现, LiNbO3晶体中明、暗屏蔽光伏孤子存在大的自偏转, 并且光孤子形状变得具有不对称性, 偏转方向的曲线斜率绝对值变大, 偏转反方向的曲线斜率绝对值变小. 分析研究表明影响其自偏转度和形变的因素包括受主浓度NA, 暗辐射强度Id 和外加电场E0 . 其他条件不变的情况下NA 越大, 明孤子的自偏转度与形变越小, 暗孤子的自偏转度与形变反而越大; 对于Id , 它对明暗孤子的影响是相同的, Id 越小, 晶体里诱导出的空间电荷场越容易达到饱和, 当信号光中心光强与暗辐射强度之比为10-1时无饱和现象产生; 随着E0 数值的增大, 明孤子的自偏转度和形变减小, 而暗孤子的自偏转度和形变反而增大.
    According to the band transport model theory, we establish the temporal evolution for dynamic equations concerning screening photovoltaic solitons in LiNbO3 crystal in this paper. By using the finite difference method, we find that there exist large self-deflection bright and dark screening photovoltaic solitons in LiNbO3 crystal, where the shape of the solitons becomes asymmetry ic with the increase of time. In addition, the absolute value of slope of the curve in deflection direction turns larger, while it tends to be smaller in the opposite direction as time increases. On the other hand, analysis shows that the factors related to the degree of self-deflection and deformation include acceptor concentration NA, dark radiation Id and applied electric field E0. When NA rises, the self-deflection degree and the deformation of bright soliton become smaller and the counterpart of dark soliton has opposite tendency while Id and E0 keep invariant. Moreover, for the bright and dark solitons, the space charge field induced in crystals is easier to reach saturation as Id diminishes and there is no saturation phenomenon in both cases when the ratio between center light intensity and dark radiation intensity is 10-1. With the E0 increases, the bright soliton self-deflection degree and deformation decrease, while the dark soliton self-deflection degree and deformation increase.
    • 基金项目: 国家自然科学基金(批准号: 61077006)资助的课题.
    • Funds: project supported by the National Natural Science Foundation of China (Grant No. 61077006).
    [1]

    Ashkin A, Byod G, Dziedzic J M, Smith R G, Ballman A A, Levinstein J J, Nassau K 1966 Appl. Phys. Lett. 9 72

    [2]

    Segev M, Crosignani B, Yariv A, Fischer B 1992 Phys. Rev. Lett. 68 923

    [3]

    Duree G C, Shultz Jr J L, Salamo G J, Segev M, Yariv A, Crosignani B, Porto P D, Sharp E J, Neurgaonker R R 1993 Phys. Rev. Lett. 71 533

    [4]

    Maufoy J, Fressengeas N, Wolferserger D, Kugel G 1999 Phys. Rev. E 59 6116

    [5]

    CastilloM D I, Aguilar P A M, Sanchez-Mondragon J J, Stepanov S, Bysloukh V 1994 Appl. Phys. Lett. 64 408

    [6]

    Shih M, Leach P, Segev M, Garrett M H, Salamo G, Valley G C 1996 Opt. Lett. 21 324

    [7]

    Segev M, Valley G C, Crosignani B, Porto P D, Yariv A 1994 Phys. Rev. Lett. 73 3211

    [8]

    Segev M, Shih M, Valley G C 1996 J. Opt. Soc. Am. B 13 706

    [9]

    Kos K, MengH, Salamo B, Shih M, Segev M, Valley G C 1996 Phys. Rev. E 53 R4330

    [10]

    Ryf R,Wiki M, Montemezzani G, Guter P, Zozulya A A 1999 Opt. Commum. 159 339

    [11]

    Segev M, Valley G C, BashawMC, Taya M, Fejer M M 1997 J. Opt. Soc. Am. B 14 1772

    [12]

    Valley G C, SegevM, Crosignani B, Yariv A, FejerMM, Bashaw M C 1994 Phys. Rev. A 50 R4457

    [13]

    TayaM, Bashaw M C, Fejer M M, Segev M, Valley G C 1995 Phys. Rev. A 52 3095

    [14]

    Chen Z, Segev M, Wilson D W, Muller R E, Maker P D 1997 Phys. Rev. Lett. 78 2948

    [15]

    Chauvet M, Coda V, Maillatte H, Fazio E, Salamo G 2005 Opt. Lett. 30 1977

    [16]

    Zhang Y Q, Lu K Q, Zhang L, Zhang M Z, Li K H 2008 Acta Phys. Sin. 57 6354 (in Chinese)[张贻齐, 卢克清, 张磊, 张美志, 李可昊 2008 物理学报 57 6354]

    [17]

    Kukhtarev N V, Markov V B, Oduloc S G, SoskinMS, Vinetskii V L 1979 Ferroeletrics 22 949

    [18]

    Ren L, Liu L, Liu D, Zu J, Luan Z 2003 J. Opt. Soc. Am. B 20 2162

  • [1]

    Ashkin A, Byod G, Dziedzic J M, Smith R G, Ballman A A, Levinstein J J, Nassau K 1966 Appl. Phys. Lett. 9 72

    [2]

    Segev M, Crosignani B, Yariv A, Fischer B 1992 Phys. Rev. Lett. 68 923

    [3]

    Duree G C, Shultz Jr J L, Salamo G J, Segev M, Yariv A, Crosignani B, Porto P D, Sharp E J, Neurgaonker R R 1993 Phys. Rev. Lett. 71 533

    [4]

    Maufoy J, Fressengeas N, Wolferserger D, Kugel G 1999 Phys. Rev. E 59 6116

    [5]

    CastilloM D I, Aguilar P A M, Sanchez-Mondragon J J, Stepanov S, Bysloukh V 1994 Appl. Phys. Lett. 64 408

    [6]

    Shih M, Leach P, Segev M, Garrett M H, Salamo G, Valley G C 1996 Opt. Lett. 21 324

    [7]

    Segev M, Valley G C, Crosignani B, Porto P D, Yariv A 1994 Phys. Rev. Lett. 73 3211

    [8]

    Segev M, Shih M, Valley G C 1996 J. Opt. Soc. Am. B 13 706

    [9]

    Kos K, MengH, Salamo B, Shih M, Segev M, Valley G C 1996 Phys. Rev. E 53 R4330

    [10]

    Ryf R,Wiki M, Montemezzani G, Guter P, Zozulya A A 1999 Opt. Commum. 159 339

    [11]

    Segev M, Valley G C, BashawMC, Taya M, Fejer M M 1997 J. Opt. Soc. Am. B 14 1772

    [12]

    Valley G C, SegevM, Crosignani B, Yariv A, FejerMM, Bashaw M C 1994 Phys. Rev. A 50 R4457

    [13]

    TayaM, Bashaw M C, Fejer M M, Segev M, Valley G C 1995 Phys. Rev. A 52 3095

    [14]

    Chen Z, Segev M, Wilson D W, Muller R E, Maker P D 1997 Phys. Rev. Lett. 78 2948

    [15]

    Chauvet M, Coda V, Maillatte H, Fazio E, Salamo G 2005 Opt. Lett. 30 1977

    [16]

    Zhang Y Q, Lu K Q, Zhang L, Zhang M Z, Li K H 2008 Acta Phys. Sin. 57 6354 (in Chinese)[张贻齐, 卢克清, 张磊, 张美志, 李可昊 2008 物理学报 57 6354]

    [17]

    Kukhtarev N V, Markov V B, Oduloc S G, SoskinMS, Vinetskii V L 1979 Ferroeletrics 22 949

    [18]

    Ren L, Liu L, Liu D, Zu J, Luan Z 2003 J. Opt. Soc. Am. B 20 2162

  • [1] 郭瑞雪, 艾保全. 可形变自驱动粒子在不对称周期管中的定向输运. 物理学报, 2023, 72(20): 200501. doi: 10.7498/aps.72.20230825
    [2] 王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [3] 王靖, 郑一周, 周罗红, 杨振军, 陆大全, 郭旗, 胡巍. 非局域自散焦克尔介质中空间光暗孤子成丝的理论与实验研究. 物理学报, 2012, 61(8): 084210. doi: 10.7498/aps.61.084210
    [4] 支启军. N=28丰中子核的形变和形状共存研究. 物理学报, 2011, 60(5): 052101. doi: 10.7498/aps.60.052101
    [5] 吉选芒, 姜其畅, 刘劲松. 含分压电阻的非相干耦合光折变屏蔽光伏空间孤子对. 物理学报, 2010, 59(7): 4701-4706. doi: 10.7498/aps.59.4701
    [6] 崔虎, 张冰志, 佘卫龙. 非相干耦合的亮和暗光伏空间孤子对的偏转特性. 物理学报, 2010, 59(3): 1823-1830. doi: 10.7498/aps.59.1823
    [7] 张贻齐, 卢克清, 张 磊, 张美志, 李可昊. 亮暗屏蔽光伏孤子在LiNbO3晶体中的大自偏转. 物理学报, 2008, 57(10): 6354-6359. doi: 10.7498/aps.57.6354
    [8] 颜利芬, 王红成, 张冰志, 佘卫龙. 光伏暗孤子和灰孤子的自偏转. 物理学报, 2007, 56(8): 4627-4634. doi: 10.7498/aps.56.4627
    [9] 何宝钢, 徐昌智, 张解放. 扩展的形变映射方法和(2+1)维破裂孤子方程的新解. 物理学报, 2006, 55(2): 511-516. doi: 10.7498/aps.55.511
    [10] 张国英, 张 辉, 刘春明, 周永军. 钢铁材料中形变诱导相变超细化机理研究. 物理学报, 2005, 54(4): 1771-1776. doi: 10.7498/aps.54.1771
    [11] 江德生, 欧阳世根, 佘卫龙. 暗-暗与亮-暗光伏孤子相互作用. 物理学报, 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
    [12] 欧阳世根, 佘卫龙. 亮-暗复色光伏孤子. 物理学报, 2004, 53(9): 3042-3048. doi: 10.7498/aps.53.3042
    [13] 刘劲松, 张都应. 损耗对屏蔽光伏空间孤子演化特性的影响. 物理学报, 2001, 50(5): 880-885. doi: 10.7498/aps.50.880
    [14] 侯春风, 李师群, 李斌, 孙秀冬. 有外加电场的光伏光折变晶体中的非相干耦合亮-暗屏蔽光伏孤子对. 物理学报, 2001, 50(9): 1709-1712. doi: 10.7498/aps.50.1709
    [15] 侯春风, 袁保红, 孙秀冬, 许克彬. 非相干耦合屏蔽光伏孤子对. 物理学报, 2000, 49(10): 1969-1972. doi: 10.7498/aps.49.1969
    [16] 乔皓, 资剑, 徐至中, 张开明. 形变超晶格Si/Ge的能带结构. 物理学报, 1993, 42(8): 1317-1323. doi: 10.7498/aps.42.1317
    [17] 乔皓, 徐至中, 张开明. 形变Si,Ge中的深能级. 物理学报, 1993, 42(11): 1830-1835. doi: 10.7498/aps.42.1830
    [18] 徐开文;沈建民;郭汉英. 超拟共形变换的Beltrami代数. 物理学报, 1989, 38(8): 1375-1378. doi: 10.7498/aps.38.1375
    [19] 滕凤恩, 王煜明. 形变α黄铜中层错的X射线测量. 物理学报, 1989, 38(1): 118-123. doi: 10.7498/aps.38.118
    [20] 李国强, 徐躬耦. 形变重离子光学势的自洽半经典计算. 物理学报, 1989, 38(4): 534-540. doi: 10.7498/aps.38.534
计量
  • 文章访问数:  6891
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-01
  • 修回日期:  2011-03-22
  • 刊出日期:  2012-01-05

/

返回文章
返回