搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非局域自散焦克尔介质中空间光暗孤子成丝的理论与实验研究

王靖 郑一周 周罗红 杨振军 陆大全 郭旗 胡巍

引用本文:
Citation:

非局域自散焦克尔介质中空间光暗孤子成丝的理论与实验研究

王靖, 郑一周, 周罗红, 杨振军, 陆大全, 郭旗, 胡巍

Theoretical and experimental investigations of spatial optical dark soliton filamentization in nonlocal self-defocusing Kerr medium

Wang Jing, Zheng Yi-Zhou, Zhou Luo-Hong, Yang Zhen-Jun, Lu Da-Quan, Guo Qi, Hu Wei
PDF
导出引用
  • 对非局域自散焦克尔介质中的空间光暗孤子成丝进行了研究. 理论上从非局域非线性理论模型出发, 数值模拟研究了非局域程度和吸收系数对暗孤子成丝的影响. 当入射背景光强一定时, 非局域程度越大成丝起始点越远、成丝数量越少; 而当入射背景光强与临界光强之比一定时, 非局域程度基本不影响成丝起始点以及成丝数量, 且非局域下的成丝数量与局域下一样. 此外, 当入射背景光强一定时, 吸收系数越大成丝数量越少. 实验上通过改变染料溶液的浓度以及背景光斑的椭圆率, 分别研究了样品浓度和背景光斑椭圆率对暗孤子成丝的影响. 当入射背景平均光强一定时, 样品浓度越小成丝数量越少, 背景光斑椭圆率越小成丝数量越少; 而当入射背景平均光强与临界光强之比一定时, 样品浓度基本不影响成丝数量. 在实验中还观察到了光学冲击波现象.
    In this paper, the spatial optical dark soliton filamentization in a nonlocal self-defocusing Kerr medium is investigated. Theoretically, starting from nonlocal nonlinear theoretical model, we examine the influences of the degree of nonlocality and the attenuation constant on the formation of dark soliton filaments by numerical simulation method. We find that when the input background optical intensity is determined, the greater the degree of nonlocality, the farther the initial point of the formation of dark filaments is and the less the number of dark filaments decreases with the increase of the degree of nonlocality; when the ratio of the background optical intensity to the critical optical intensity is fixed, the degree of nonlocality can hardly influence the number of dark filaments and the number of dark filaments under nonlocality is equal to that under locality. Besides, when the input background optical intensity is determined, the number of dark filaments decreases with the increase of the attenuation constant. Experimentally, by changing the concentration of dye solution and the ellipticity of background light, we discuss the influences of the concentration of sample and the ellipticity of background light on the formation of dark soliton filaments respectively and find that when the input background average optical intensity is determined, the number of dark filaments decreases with the increases of the concentration of sample and the ellipticity of background light; when the ratio of the background average optical intensity to the critical optical intensity is fixed, the concentration of sample can hardly influence the number of dark filaments. Besides, the phenomenon of optical shock wave is found in our experiment.
    • 基金项目: 国家自然科学基金(批准号: 10804033, 11174090, 11174091)、广东省高等学校科技创新团队计划(批准号: 06CXTD005)和 高等学校博士学科点专项科研基金(批准号: 200805740002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10804033, 11174090, 11174091), the Science and Technology Innovative Research Team Program of Institution of Higher Education of Guangdong Province, China (Grant No. 06CXTD005), and the Specialized Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 200805740002).
    [1]

    Kivshar Y S, Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press)

    [2]

    Snyder A W, Mitchell D J 1997 Science 276 1538

    [3]

    Conti C, Peccianti M, Assanto G 2004 Phys. Rev. Lett. 92 113902

    [4]

    Peccianti M, Brzdakiewicz K A, Assanto G 2002 Opt. Lett. 27 16

    [5]

    Hu W, Zhang T, Guo Q, Xuan L, Lan S 2006 Appl. Phys. Lett. 89 071111

    [6]

    Serak S V, Tabiryan N V, Peccianti M, Assanto G 2006 IEEE Photon. Techn. Lett. 18 1094

    [7]

    Ouyang S G, Guo Q 2007 Phys. Rev. A 76 053833

    [8]

    Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 77 033842

    [9]

    Rotschild C, Cohen O, Manela O, Segev M 2005 Phys. Rev. Lett. 95 213904

    [10]

    Alfassi B, Rotschild C, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 213901

    [11]

    Krolikowski W, Bang O 2000 Phys. Rev. E 63 016610

    [12]

    Dreischuh A, Neshev D N, Petersen D E, Bang O, Krolikowski W 2006 Phys. Rev. Lett. 96 043901

    [13]

    Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004 Opt. Lett. 29 286

    [14]

    Conti C, Fratalocchi A, Peccianti M, Ruocco G, Trillo S 2009 Phys. Rev. Lett. 102 083902

    [15]

    Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240

    [16]

    Kamchatnov A M, Kraenkel R A, Umarov B A 2002 Phys. Rev. E 66 036609

    [17]

    Bettelheim E, Abanov A G, Wiegmann P 2006 Phys. Rev. Lett. 97 246401

    [18]

    Whitman G B 1974 Linear and Nonlinear Waves (New York: Wiley)

    [19]

    Ghofraniha N, Conti C, Ruocco G, Trillo S 2007 Phys. Rev. Lett. 99 043903

    [20]

    Zhou L H, Gao X H, Yang Z J, Lu D Q, Guo Q, Cao W W, Hu W 2011 Acta Phys. Sin. 60 044208 (in Chinese) [周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍 2011 物理学报 60 044208]

    [21]

    Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016612

    [22]

    Ouyang S G, Guo Q 2009 Opt. Express 17 5170

  • [1]

    Kivshar Y S, Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press)

    [2]

    Snyder A W, Mitchell D J 1997 Science 276 1538

    [3]

    Conti C, Peccianti M, Assanto G 2004 Phys. Rev. Lett. 92 113902

    [4]

    Peccianti M, Brzdakiewicz K A, Assanto G 2002 Opt. Lett. 27 16

    [5]

    Hu W, Zhang T, Guo Q, Xuan L, Lan S 2006 Appl. Phys. Lett. 89 071111

    [6]

    Serak S V, Tabiryan N V, Peccianti M, Assanto G 2006 IEEE Photon. Techn. Lett. 18 1094

    [7]

    Ouyang S G, Guo Q 2007 Phys. Rev. A 76 053833

    [8]

    Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 77 033842

    [9]

    Rotschild C, Cohen O, Manela O, Segev M 2005 Phys. Rev. Lett. 95 213904

    [10]

    Alfassi B, Rotschild C, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 213901

    [11]

    Krolikowski W, Bang O 2000 Phys. Rev. E 63 016610

    [12]

    Dreischuh A, Neshev D N, Petersen D E, Bang O, Krolikowski W 2006 Phys. Rev. Lett. 96 043901

    [13]

    Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004 Opt. Lett. 29 286

    [14]

    Conti C, Fratalocchi A, Peccianti M, Ruocco G, Trillo S 2009 Phys. Rev. Lett. 102 083902

    [15]

    Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240

    [16]

    Kamchatnov A M, Kraenkel R A, Umarov B A 2002 Phys. Rev. E 66 036609

    [17]

    Bettelheim E, Abanov A G, Wiegmann P 2006 Phys. Rev. Lett. 97 246401

    [18]

    Whitman G B 1974 Linear and Nonlinear Waves (New York: Wiley)

    [19]

    Ghofraniha N, Conti C, Ruocco G, Trillo S 2007 Phys. Rev. Lett. 99 043903

    [20]

    Zhou L H, Gao X H, Yang Z J, Lu D Q, Guo Q, Cao W W, Hu W 2011 Acta Phys. Sin. 60 044208 (in Chinese) [周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍 2011 物理学报 60 044208]

    [21]

    Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016612

    [22]

    Ouyang S G, Guo Q 2009 Opt. Express 17 5170

  • [1] 杨为明, 段晓溪, 张琛, 理玉龙, 刘浩, 关赞洋, 章欢, 孙亮, 董云松, 杨冬, 王哲斌, 杨家敏. 小尺度靶丸冲击波调控的冲击波测量技术优化及应用. 物理学报, 2024, 73(12): 125203. doi: 10.7498/aps.73.20232000
    [2] 李森清, 张肖, 林机. 非局域非线性耦合器中暗孤子的传输. 物理学报, 2021, 70(18): 184206. doi: 10.7498/aps.70.20210275
    [3] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [4] 郑一帆, 黄光侨, 林机. 非局域高次非线性介质中的多极暗孤子. 物理学报, 2018, 67(21): 214207. doi: 10.7498/aps.67.20180786
    [5] 何民卿, 董全力, 盛政明, 张杰. 激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究. 物理学报, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [6] 高星辉, 唐冬, 张承云, 郑晖, 陆大全, 胡巍. 非局域表面暗孤子及其稳定性分析. 物理学报, 2014, 63(2): 024204. doi: 10.7498/aps.63.024204
    [7] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析. 物理学报, 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [8] 欧阳世根. 自散焦非局域非线性材料中的光学涡旋孤子. 物理学报, 2013, 62(4): 040504. doi: 10.7498/aps.62.040504
    [9] 周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍. 非局域非线性介质中空间暗孤子的理论和实验研究. 物理学报, 2011, 60(4): 044208. doi: 10.7498/aps.60.044208
    [10] 高星辉, 杨振军, 周罗红, 郑一周, 陆大全, 胡巍. 非局域程度对空间暗孤子相互作用的影响. 物理学报, 2011, 60(8): 084213. doi: 10.7498/aps.60.084213
    [11] 崔虎, 张冰志, 佘卫龙. 非相干耦合的亮和暗光伏空间孤子对的偏转特性. 物理学报, 2010, 59(3): 1823-1830. doi: 10.7498/aps.59.1823
    [12] 颜利芬, 王红成, 张冰志, 佘卫龙. 光伏暗孤子和灰孤子的自偏转. 物理学报, 2007, 56(8): 4627-4634. doi: 10.7498/aps.56.4627
    [13] 秦晓娟, 郭 旗, 胡 巍, 兰 胜. 椭圆强非局域空间光孤子. 物理学报, 2006, 55(3): 1237-1243. doi: 10.7498/aps.55.1237
    [14] 卞保民, 杨 玲, 张 平, 纪运景, 李振华, 倪晓武. 理想气体球面强冲击波一般自模拟运动模型. 物理学报, 2006, 55(8): 4181-4187. doi: 10.7498/aps.55.4181
    [15] 卞保民, 杨 玲, 李振华, 陈 笑, 贺安之, 沈中华. 衰减球面冲击波波阵面自模拟运动特性. 物理学报, 2004, 53(3): 840-843. doi: 10.7498/aps.53.840
    [16] 江少恩, 李文洪, 孙可煦, 蒋小华, 刘永刚, 崔延莉, 陈久森, 丁永坤, 郑志坚. 神光Ⅱ上柱形黑腔辐射驱动冲击波. 物理学报, 2004, 53(10): 3424-3428. doi: 10.7498/aps.53.3424
    [17] 陆 猗, 刘思敏, 郭 儒, 杨立森, 黄春福, 汪大云. 完全非相干白光一维光生伏打暗空间孤子. 物理学报, 2003, 52(12): 3075-3081. doi: 10.7498/aps.52.3075
    [18] 刘思敏, 汪大云, 赵红娥, 李祖斌, 郭儒, 陆猗, 黄春福, 高垣梅. 从自散焦到自聚焦的动态转换和相位共轭亮空间孤子. 物理学报, 2002, 51(12): 2761-2766. doi: 10.7498/aps.51.2761
    [19] 侯春风, 李师群, 李斌, 孙秀冬. 有外加电场的光伏光折变晶体中的非相干耦合亮-暗屏蔽光伏孤子对. 物理学报, 2001, 50(9): 1709-1712. doi: 10.7498/aps.50.1709
    [20] 佘卫龙, 何穗荣, 汪河洲, 余振新, 莫党. 热自聚焦诱导光折变非对称自散焦. 物理学报, 1996, 45(12): 2022-2026. doi: 10.7498/aps.45.2022
计量
  • 文章访问数:  5876
  • PDF下载量:  815
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-12
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

/

返回文章
返回