搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分辨率宽范围连续变推力离子推力器设计及其天地一体化验证

胡竟 谷增杰 王成飞 郭德洲 王大年 陈娟娟 杨三祥 唐福俊 孙明明 贾艳辉 吴辰宸 耿海 杨福全 成荣

引用本文:
Citation:

高分辨率宽范围连续变推力离子推力器设计及其天地一体化验证

胡竟, 谷增杰, 王成飞, 郭德洲, 王大年, 陈娟娟, 杨三祥, 唐福俊, 孙明明, 贾艳辉, 吴辰宸, 耿海, 杨福全, 成荣

Design of High-Resolution Wide-Range Continuously Variable Thrust Ion Thruster and Its Space-Earth Integrated Verification

Hu Jing, Gu Zeng-Jie, Wang Cheng-Fei, Guo De-Zhou, Wang Da-nian, Chen JuanJuan, Yang San-Xiang, Tang Fu-Jun, Sun Ming-Ming, Jia Yan-Hui, Wu Chenchen, Geng Hai, Yang Fu-Quan, Cheng Rong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 为满足重力梯度测量卫星无拖曳飞行任务和近地轨道高分辨率观测卫星精确维轨任务对离子推力器连续变推力能力及其高分辨率特性的应用需求,对高分辨率宽范围变推力离子推力器开展了技术研究与应用验证。基于Kaufman型离子推力器等离子体放电与离子束流引出两大关键物理过程之间的弱耦合性和相对分离性,提出了发散场构型的宽范围变推力离子推力器技术方案,开展了放电室宽范围放电稳定性设计、兼顾宽温域启动和高密度引出需求的凹球面离子光学系统构型设计以及空心阴极电流发射连续性设计等技术研究工作。基于此,完成了10cm口径高分辨率宽范围连续变推力离子推力器的设计优化与地面性能评测,并在2023年实现在轨飞行应用。卫星在轨测试结果表明: 10cm口径高分辨率宽范围连续变推力离子推力器可在98.3-585.3W功率范围内实现1.39-20.05mN的推力调节,比冲保持在547-3056s范围内,与地面测试结果相当;推力响应速率约为3mN/s,推力分辨率不低于15μN,较地面测试结果更佳。相比同类型传统化学推进模式下的卫星轨道控制效果,基于10cm口径高分辨率宽范围连续变推力离子推力器的卫星维轨精度提高2个数量级,有效保障了卫星在轨工程任务的实施。
    To meet the application requirements of continuous variable thrust capability and high-resolution characteristics for ion thrusters in drag-free flight missions of gravity gradient measurement satellites and precise orbit maintenance missions of near-Earth high-resolution observation satellites, technical research and application verification were conducted on a high-resolution wide-range variable thrust ion thruster. Leveraging the weak coupling and relative independence between the two critical physical processes of plasma discharge and ion beam extraction in Kaufman-type ion thrusters, a wide-range variable thrust ion thruster technical scheme with a divergent magnetic field configuration was proposed. Key technical investigations included wide-range discharge stability in the discharge chamber, a concave spherical ion optical system configuration design balancing wide-temperature-range ignition and high-density extraction requirements, and hollow cathode current emission continuity design. Based on this, the design optimization and ground-based performance evaluation of a 10cm-aperture high-resolution wide-range continuously variable thrust ion thruster were completed, achieving on-orbit flight application in 2023. Satellite on-orbit test results demonstrate that the 10cm-aperture thruster achieves thrust regulation of 0.99–20.05 mN within a power range of 98.5–585 W, with specific impulse maintained at 410–3100 s, consistent with ground test results. The thrust response rate reaches approximately 3 mN/s, and thrust resolution exceeds 15 μN, outperforming ground test metrics. Compared to traditional chemical propulsion systems for satellite orbit control, the thruster enables a two-order-of-magnitude improvement in orbit maintenance accuracy, effectively ensuring the implementation of the satellite's on-orbit engineering missions.
  • [1]

    Zheng M F, Zhang T P, Meng W, Li X K, Liang K 2015 J. Propul. Technol. 36 1116 (in Chinese) [郑茂繁,张天平,孟伟,李兴坤,梁凯 2015 推进技术 36 1116]

    [2]

    Zhang T P, Jiang H C, Sun Y K 2010 Vacuum and Cryogenics.16 72(in Chinese) [张天平,田华兵,孙运奎 2010 真空与低温 16 72]

    [3]

    Hu J, Jiang H C, Wang L, Wang X Y, Gu Z 2015 Vacuum and Cryogenics 21 103(in Chinese) [胡竟,江豪成,王亮,王小永,顾左 2015 真空与低温 21 103]

    [4]

    David H M 1997 Presented at the 25th International Electric Propulsion Conference Cleveland, USA, August 24-28,1997 p1997-095-1

    [5]

    Brophy J R, Mareucei M G, Ganapathi C B, Garner C E,Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &Exhibit Huntsville, USA, July 20-23, 2003 p2003-4542-1

    [6]

    Corbett M H, Edwards C H 2007 Presented at the 30th International Electric Propulsion Conference Florence, Italy September 17-20,2007 p2007-210-1

    [7]

    70-1

    [8]

    0, 2002 p2002-4348-1

    [9]

    5, 2011 p2011-091-1

    [10]

    5, 2011 p2011-092-1

    [11]

    5, 2011 p2011-234-1

    [12]

    5, 2011 p2011-6072-1

    [13]

    5, 2011 p2011-332-1

    [14]

    Wilbur P J, Brophy J R 1986 AIAA J 1986 24 278

    [15]

    Bechtel R T 1981 Presented at the 15th International Electric Propulsion Conference Las Vegas, USA April 21-23, 1981 p1981-714-1

    [16]

    Kerslake W R 1971 Journal of Spacecraft and Rockets 1971 8 213

    [17]

    1, 2007 p2007-5248-1

    [18]

    2, 2006 p2006-4489-1

    [19]

    Hiatt J M, Wilbur P J 1985 Presented at the 18th International Electric Propulsion Conference Alexandria, USA September 30 -October 02,1985, p1985-2007-1

    [20]

    5, 1998 p1998-3343-1

    [21]

    Chen J J, Geng H, Long J F, Wu C C, Jia Y H, Guo N 2022 Vacuum and Cryogenics.28 514(in Chinese) [陈娟娟,耿海,龙建飞,吴辰宸,贾艳辉,郭宁 2022 真空与低温 28 514]

    [22]

    Lu C 2019 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [鹿畅 2019 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [23]

    Zhao Z W, Zhang T P, Ran W L, Li X 2023 Journal of Rocket Propulsion 49 1(in Chinese) [赵志伟,张天平,冉文亮,李璇 2023 火箭推进 49 1]

    [24]

    Guo D Z, Hu J, Yang F Q, Geng H, Li J, Zhao Y D, Li J P 2022 Vacuum and Cryogenics.28 115(in Chinese) [郭德洲,胡竟,杨福全,耿海,李娟,赵以德,李建鹏 2022 真空与低温 28 115]

    [25]

    0,2013 p2013-48-1

    [26]

    0, 2015 p2015-31-1

    [27]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p197.

    [28]

    Zhang T P, Yang F Q, Li J 2020 Technology of ion electric propulsion (Shanghai: Science Press) p91 (in Chinese) [张天平,杨福全,李娟 2020 离子电推进技术(上海:科学出版社)第91页]

    [29]

    Liu J S 1995 Ion beam technology and application (Beijing: National Defense Industry Press) p111-113(in Chinese) [刘金声 1995 离子束技术及应(北京:国防工业出版社)第111-113页]

    [30]

    Chen J J, Zhang T P, Jia Y H, Zheng M F 2013 Vacuum and Cryogenics.19 163(in Chinese) [陈娟娟,张天平,贾艳辉,郑茂繁 2013 真空与低温 19 163]

    [31]

    Brophy J R, Wilbur P J 1982 Journal of Spacecraft and Rockets 19 586

    [32]

    Milligan D J, Gabriel S B 1999 Presented at the 35th Joint Propulsion Conference and Exhibit, USA June 20-24,1999 p1999-2440-1

    [33]

    Li J P, Zhao Y D, Jin W Y, Zhang X M, LI J, Wang Y L 2022 Acta Phys. Sin. 71 195203(in Chinese) [李建鹏,赵以德,靳伍银,张兴民,李娟,王彦龙. 物理学报, 2022,71 195203]

    [34]

    Wang J, Guo N, Gu Z J, Ding J 2017 Vacuum and Cryogenics 23 318(in Chinese) [王进,郭宁,谷增杰,丁继 2022 真空与低温 23 318]

    [35]

    Palluel P, Shroff A M 1980 Journal of Applied Physics 51 2984

    [36]

    Domomkos M, Foster J E, Soula G C 2005 Journal of Propulsion and Power 21 102

    [37]

    Goebel D M, Jameson KK 2007 Journal of Propulsion and Power 23 552

    [38]

    Hu J,Yang F Q,Guo D Z,GU Z J,Shao M X, Zheng M F 2020 J. Propul. Technol. 41 2382 (in Chinese) [胡 竟,杨福全,郭德洲,谷增杰,邵明学,郑茂繁 2020 推进技术 41 2382]

    [39]

    Moore S N 1997 Presented at the 25th International Electric Propulsion Conference Cleveland, USA, August 24-28,1997 p1997-017-1

  • [1] 董耀勇, 吴仪, 郑学军, 王登龙, 赵鹏. 双腔光力系统中基于连续域束缚态的超高分辨率质量传感. 物理学报, doi: 10.7498/aps.74.20250063
    [2] 刘凡, 蒋渊丞, 郭华. 高分辨率磁共振二维扩散成像技术综述. 物理学报, doi: 10.7498/aps.74.20250235
    [3] 付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠. 微波离子推力器中磁场发散区电子加热模式研究. 物理学报, doi: 10.7498/aps.73.20240017
    [4] 谈人玮, 杨涓, 耿海, 吴先明, 牟浩. 氮气工质10厘米ECRIT中和器实验研究. 物理学报, doi: 10.7498/aps.72.20221951
    [5] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理. 物理学报, doi: 10.7498/aps.72.20230719
    [6] 李建鹏, 靳伍银, 赵以德. 多模式离子推力器输入参数设计及工作特性研究. 物理学报, doi: 10.7498/aps.71.20212045
    [7] 李建鹏, 赵以德, 靳伍银, 张兴民, 李娟, 王彦龙. 多模式离子推力器放电室和栅极设计及其性能实验研究. 物理学报, doi: 10.7498/aps.71.20220720
    [8] 李建鹏, 靳伍银, 赵以德. 加速电压和阳极流率对离子推力器性能的影响. 物理学报, doi: 10.7498/aps.71.20211316
    [9] 钟志, 赵婉婷, 单明广, 刘磊. 远心同-离轴混合数字全息高分辨率重建方法. 物理学报, doi: 10.7498/aps.70.20210190
    [10] 龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正. 离子推力器推力密度特性. 物理学报, doi: 10.7498/aps.67.20171507
    [11] 龙建飞, 张天平, 李娟, 贾艳辉. 离子推力器栅极透过率径向分布特性研究. 物理学报, doi: 10.7498/aps.66.162901
    [12] 陈茂林, 夏广庆, 徐宗琦, 毛根旺. 栅极热变形对离子推力器工作过程影响分析. 物理学报, doi: 10.7498/aps.64.094104
    [13] 时光, 张福民, 曲兴华, 孟祥松. 高分辨率调频连续波激光绝对测距研究. 物理学报, doi: 10.7498/aps.63.184209
    [14] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, doi: 10.7498/aps.63.182901
    [15] 郑晶晶, 简水生, 马林, 柏云龙, 裴丽, 宁提纲, 闻映红. 具有大范围高分辨率线性响应特性的超短无芯光纤溶液折射率传感器. 物理学报, doi: 10.7498/aps.62.150703
    [16] 杨涓, 王与权, 李鹏飞, 王阳, 王云民, 马艳杰. 无工质微波推力器推力测量实验. 物理学报, doi: 10.7498/aps.61.110301
    [17] 杨涓, 李鹏飞, 杨乐. 不同功率下无工质微波推力器的推力预估. 物理学报, doi: 10.7498/aps.60.124101
    [18] 尚英, 霍丙忠, 孟春宁, 袁景和. 并矢格林函数下的球形超透镜. 物理学报, doi: 10.7498/aps.59.8178
    [19] 朱德彰, 潘浩昌, 曹建清, 朱福英, 陈国明, 陈国樑, 杨絜, 邹世昌. 用高分辨率沟道背散射谱仪研究硅的低能氮离子氮化. 物理学报, doi: 10.7498/aps.39.96
    [20] 陆坤权, 常龙存, 赵雅琴. X射线连续谱晶体单色器的分辨率. 物理学报, doi: 10.7498/aps.32.1505
计量
  • 文章访问数:  155
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-02

/

返回文章
返回