搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

远心同-离轴混合数字全息高分辨率重建方法

钟志 赵婉婷 单明广 刘磊

引用本文:
Citation:

远心同-离轴混合数字全息高分辨率重建方法

钟志, 赵婉婷, 单明广, 刘磊

Telecentric in-line-and-off-axis hybrid digital holographic high-resolution reconstruction method

Zhong Zhi, Zhao Wan-Ting, Shan Ming-Guang, Liu Lei
PDF
HTML
导出引用
  • 现存的同-离轴混合数字全息技术可同时解决同轴全息共轭像消除困难和离轴全息分辨率受限的问题, 但需预测衍射距离, 不仅复杂耗时, 且精度有限; 而远心成像技术可获得非衍射图像, 无需预测衍射距离, 并具有可消除球面像差和散焦像差等特性. 因此, 本文将远心成像技术引入同-离轴混合数字全息技术中, 提出一种远心同-离轴混合数字全息高分辨率重建方法. 该方法利用远心同-离轴混合数字全息系统, 分别采集聚焦的离轴全息图和同轴全息图; 进而将离轴全息图获得的低分辨率相位信息与同轴全息图获得的振幅信息相复合, 作为迭代恢复过程的物光复振幅初始值, 并分别在空域和频域进行约束迭代, 实现高分辨率重建. 实验结果表明, 该方法无需衍射距离等先验信息, 便可很好地消除共轭像和系统畸变的干扰, 并可充分利用图像传感器的空间带宽积, 实现物体的高分辨率重建.
    In-line digital holography usually employs a phase retrieval algorithm to decouple the phase information but fails to eliminate the unwanted DC and twin image terms when the measured sample does not agree with the sparsity. While the off-axis digital holography can efficiently remove the unwanted image terms but can not reserve the high frequencies of the sample to realize high resolution. The in-line-and-off-axis hybrid digital holography was then developed to provide a relatively high resolution digital holographic imaging without considering the effect of the unwanted terms. In other words, the in-line-and-off-axis hybrid digital holography merges all of the best virtues of the mentioned-above methods in an efficient and elegant way. However, this state-of-the-art method requires prior knowledge about the diffraction distance, which results in time-consuming and low accuracy. In other sense, telecentric technology can realize non-diffractive imaging without the knowledge about the diffraction distance or spherical aberration or defocusing aberration. Therefore, in this paper, a novel in-line-and-off-axis hybrid digital holography is proposed by introducing telecentric imaging architecture, and the corresponding reconstruction method is further proposed by utilizing constrained iterative approach. In this method, telecentric in-line-and-off-axis hybrid digital holography is first used to acquire focused off-axis and in-line holograms, respectively. The low resolution phase information is reconstructed from the off-axis hologram by using Fourier transform method with the help of the sample-free off-axis hologram, and then multiplexed with the amplitude information obtained from the in-line hologram to act as the initial complex amplitude in the iterative recovery process. As a result, constrained iterations are carried out in the spatial domain and frequency domain to realize high resolution and high speed reconstruction. After simulations, we build an experimental setup and demonstrate the operation of the method with USAF resolution target, onion cells and bee wings. Both the simulation and experimental results show that the proposed method can require no prior knowledge to suppress the phase disturbance caused by the unwanted image terms and optical aberrations, resulting in high speed and full utilization of spatial bandwidth product of the digital camera to yield high resolution reconstruction. We hope that the proposed method will have most practical applications in the case where large resolution, high speed and good quality are needed.
      通信作者: 单明广, smgsir@gmail.com ; 刘磊, liulei2015@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61775046)、黑龙江省自然科学基金(批准号: LC2018027)和中央高校基本科研业务费(批准号: 3072021CF0803, 3072021CFJ0801, 3072021CFT0803)资助的课题
      Corresponding author: Shan Ming-Guang, smgsir@gmail.com ; Liu Lei, liulei2015@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61775046), the Natural Science Foundation of Heilongjiang Province, China (Grant No. LC2018027), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 3072021CF0803, 3072021CFJ0801, 3072021CFT0803)
    [1]

    Schnars U, Juptner W 1994 Appl. Opt. 33 179Google Scholar

    [2]

    Wang Z, Millet L J, Gillette M U, Popescu G 2008 Opt. Lett. 33 1270Google Scholar

    [3]

    Aguilar J C, Raul Berriel-Valdos L, Felix Aguilar J 2013 Opt. Eng. 52 104103Google Scholar

    [4]

    Kemper B, Vollmer A, Rommel C E, Schnekenburger J, Von B G, Biomed J 2011 J. Biomed. Opt. 16 026014Google Scholar

    [5]

    Zhao W Q, Qiu L R, Xiao Y, Yang J M 2016 Opt. Express 24 22813Google Scholar

    [6]

    Donnarumma D, Brodoline A, Alexandre D 2016 Opt. Express 24 26887Google Scholar

    [7]

    Zhang J W, Dai S Q, Ma C J, Di J L, Zhao J L 2017 Opt. Lett. 42 3462Google Scholar

    [8]

    Yang W J, Liu X J, Lu W L, Guo X T, Popescu G 2018 Precis. Eng. 51 348Google Scholar

    [9]

    Qiu L R, Wang Y, Wu H X, Sun Y B, Cui H, Zhao W Q, Yuan L, Zhan C L 2018 Opt. Express 26 2314Google Scholar

    [10]

    Hu C F, Zhu S S, Gao L 2018 Opt. Lett. 43 3373Google Scholar

    [11]

    周宏强, 万玉红, 满天龙 2018 物理学报 67 044202Google Scholar

    Zhou H Q, Wan Y H, Man T L 2018 Acta Phys. Sin. 67 044202Google Scholar

    [12]

    张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才 2020 物理学报 69 164201Google Scholar

    Zhang Y Y, Wu J C, Hao R, Jin S Z, Cao L C 2020 Acta Phys. Sin. 69 164201Google Scholar

    [13]

    Liu J Q, Zhu L Q, Zhang F, Dong M L, Qu X H 2019 Appl. Opt. 58 4042Google Scholar

    [14]

    王华英, 刘飞飞, 宋修法, 廖微, 赵宝群, 于梦杰, 刘佐强 2013 物理学报 62 024207Google Scholar

    Wang H Y, Liu F F, Liao W, Song X F, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 024207Google Scholar

    [15]

    Cuche E, Marquet P, Depeursinge C 1999 Appl. Opt. 38 6994Google Scholar

    [16]

    Pham H V, Edwards C, Lynford L G, Popescu G 2013 Appl. Opt. 52 A97Google Scholar

    [17]

    Gao P, Harder I, Nercissian V, Mantel K, Yao B 2010 Opt. Lett. 35 712Google Scholar

    [18]

    Bai H Y, Shan M G, Zhong Z, Guo L L, Zhang Y B 2015 Appl. Opt. 54 9513Google Scholar

    [19]

    Yamaguchi I, Zhang T 1997 Opt. Lett. 22 1268Google Scholar

    [20]

    Oshima T, Matsudo Y, Kakue T, Arai D, Shimobaba T, Ito T 2015 Opt. Commun. 350 270Google Scholar

    [21]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [22]

    Fienup J 1982 Appl. Opt. 21 2758Google Scholar

    [23]

    Latychevskaia T, Fink H W 2007 Phy. Rev. Lett. 98 233901Google Scholar

    [24]

    Rong L, Li Y, Liu S, Xiao W, Pan F, Wang D Y 2013 Opt. Laser Eng. 51 553Google Scholar

    [25]

    Yang G Z, Dong B Z, Gu B Y, Zhuang J Y, Ersoy O K 1994 Appl. Opt. 33 209Google Scholar

    [26]

    Zhang W H, Cao L C, David J B, Zhang H, Cang J, Jin G F 2018 Phy. Rev. Lett. 121 093902Google Scholar

    [27]

    Orzó L 2015 Opt. Express 23 16638Google Scholar

    [28]

    王凤鹏, 王大勇, 王云新, 戎路, 赵洁 2018 中国激光 45 0609001Google Scholar

    Wang F P, Wang D Y, Wang Y X, Rong L, Zhao J 2018 Chinese Journal of Lasers 45 0609001Google Scholar

    [29]

    Khare K, Ali P T S, Joseph J 2013 Opt. Express 21 5634Google Scholar

    [30]

    Wu X Y, Yu Y J, Zhou W J 2014 Opt. Express 22 19860Google Scholar

    [31]

    Zhong M, Cui J, Hyun J S, Pan L, Duan P, Zhang S 2020 Meas. Sci. Technol. 31 085003Google Scholar

    [32]

    Sanchez-Ortiga E, Ferraro P, Martinez-Corral M 2011 Opt. Soc. Am. A 28 1410Google Scholar

    [33]

    Zhong Z, Bai H Y, Shan M G, Zhang Y B, Guo L L 2017 Opt. Laser Eng. 97 9Google Scholar

    [34]

    Hao B G, Shan M G, Zhong Z, Diao M, Wang Y, Zhang Y B 2015 J. Opt. 17 035602Google Scholar

  • 图 1  远心同-离轴混合数字全息成像系统示意图

    Fig. 1.  Schematic of the telecentric in-line-and-off-axis hybrid digital holography system.

    图 2  远心同-离轴混合数字全息重建算法框图

    Fig. 2.  Schematic of telecentric in-line-and-off-axis hybrid digital holographic reconstruction algorithm.

    图 3  (a)同轴全息图; (b)离轴全息图

    Fig. 3.  (a) In-line hologram; (b) off-axis hologram.

    图 4  同轴全息图再现结果 (a)振幅像; (b)相位像

    Fig. 4.  Reconstructed results of in-line hologram: (a) Amplitude image; (b) phase image.

    图 5  离轴全息图再现结果 (a)振幅像; (b)相位像

    Fig. 5.  Reconstructed results of off-axis hologram: (a) Amplitude image; (b) phase image.

    图 6  再现像误差随迭代次数变化 (a)振幅均方误差收敛曲线; (b)相位均方误差收敛曲线

    Fig. 6.  Mean squared errors at each iteration: (a) Amplitude mean square error convergence curve; (b) phase mean square error convergence curve.

    图 7  同-离轴混合数字全息再现结果 (a)振幅像; (b)相位像

    Fig. 7.  Reconstructed results obtained by the in-line-and-off-axis hybrid digital holography: (a) Amplitude image; (b) phase image.

    图 8  USAF分辨率板实验结果 (a)同轴全息图; (b)离轴全息图; (c) 同轴数字全息再现像; (d)离轴数字全息再现像; (e)同-离轴混合数字全息再现像

    Fig. 8.  Experimental results of USAF resolution target: (a) In-line hologram; (b) off-axis hologram; (c) amplitude reconstructed image of the in-line hologram; (d) amplitude reconstructed image of the off-axis hologram; (e) amplitude reconstructed image of the in-line-and-off-axis hybrid digital holography.

    图 9  洋葱表皮细胞实验结果 (a)同轴全息图; (b)离轴全息图; (c)同轴数字全息再现强度像; (d)同轴数字全息再现相位像; (e) 离轴数字全息再现强度像; (f) 离轴数字全息再现相位像; (g) 混合数字全息再现强度像; (h) 混合数字全息再现相位像; (i)相位剖面曲线

    Fig. 9.  Experimental results of onion epidermal cell: (a) In-line hologram; (b) off-axis hologram; (c) amplitude reconstructed image of the in-line hologram; (d) phase reconstructed image of the in-line hologram; (e) amplitude reconstructed image of the off-axis hologram; (f) phase reconstructed image of the off-axis hologram; (g) amplitude reconstructed image of the in-line-and-off-axis hybrid digital holography; (h) phase reconstructed image of the in-line-and-off-axis hybrid digital holography; (i) phase profile curves.

    图 10  蜜蜂翅膀实验结果 (a)同轴全息图; (b)离轴全息图; (c)同轴数字全息再现强度像; (d)同轴数字全息再现相位像; (e) 离轴数字全息再现强度像; (f) 离轴数字全息再现相位像; (g) 混合数字全息再现强度像; (h) 混合数字全息再现相位像; (i)相位剖面曲线

    Fig. 10.  Experimental results of bee wings: (a) In-line hologram; (b) off-axis hologram; (c) amplitude reconstructed image of the in-line hologram; (d) phase reconstructed image of the in-line hologram; (e) amplitude reconstructed image of the off-axis hologram; (f) phase reconstructed image of the off-axis hologram; (g) amplitude reconstructed image of the in-line-and-off-axis hybrid digital holography; (h) phase reconstructed image of the in-line-and-off-axis hybrid digital holography; (i) phase profile curves

    表 1  不同算法重建振幅和相位的峰值信噪比

    Table 1.  Peak signal-to-noise ratio (PSNR) of amplitudes and phases reconstructed by different algorithms.

    同轴算法离轴算法混合算法
    振幅PSNR/dB71.5566.5482.37
    相位PSNR/dB43.6955.2957.70
    下载: 导出CSV
  • [1]

    Schnars U, Juptner W 1994 Appl. Opt. 33 179Google Scholar

    [2]

    Wang Z, Millet L J, Gillette M U, Popescu G 2008 Opt. Lett. 33 1270Google Scholar

    [3]

    Aguilar J C, Raul Berriel-Valdos L, Felix Aguilar J 2013 Opt. Eng. 52 104103Google Scholar

    [4]

    Kemper B, Vollmer A, Rommel C E, Schnekenburger J, Von B G, Biomed J 2011 J. Biomed. Opt. 16 026014Google Scholar

    [5]

    Zhao W Q, Qiu L R, Xiao Y, Yang J M 2016 Opt. Express 24 22813Google Scholar

    [6]

    Donnarumma D, Brodoline A, Alexandre D 2016 Opt. Express 24 26887Google Scholar

    [7]

    Zhang J W, Dai S Q, Ma C J, Di J L, Zhao J L 2017 Opt. Lett. 42 3462Google Scholar

    [8]

    Yang W J, Liu X J, Lu W L, Guo X T, Popescu G 2018 Precis. Eng. 51 348Google Scholar

    [9]

    Qiu L R, Wang Y, Wu H X, Sun Y B, Cui H, Zhao W Q, Yuan L, Zhan C L 2018 Opt. Express 26 2314Google Scholar

    [10]

    Hu C F, Zhu S S, Gao L 2018 Opt. Lett. 43 3373Google Scholar

    [11]

    周宏强, 万玉红, 满天龙 2018 物理学报 67 044202Google Scholar

    Zhou H Q, Wan Y H, Man T L 2018 Acta Phys. Sin. 67 044202Google Scholar

    [12]

    张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才 2020 物理学报 69 164201Google Scholar

    Zhang Y Y, Wu J C, Hao R, Jin S Z, Cao L C 2020 Acta Phys. Sin. 69 164201Google Scholar

    [13]

    Liu J Q, Zhu L Q, Zhang F, Dong M L, Qu X H 2019 Appl. Opt. 58 4042Google Scholar

    [14]

    王华英, 刘飞飞, 宋修法, 廖微, 赵宝群, 于梦杰, 刘佐强 2013 物理学报 62 024207Google Scholar

    Wang H Y, Liu F F, Liao W, Song X F, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 024207Google Scholar

    [15]

    Cuche E, Marquet P, Depeursinge C 1999 Appl. Opt. 38 6994Google Scholar

    [16]

    Pham H V, Edwards C, Lynford L G, Popescu G 2013 Appl. Opt. 52 A97Google Scholar

    [17]

    Gao P, Harder I, Nercissian V, Mantel K, Yao B 2010 Opt. Lett. 35 712Google Scholar

    [18]

    Bai H Y, Shan M G, Zhong Z, Guo L L, Zhang Y B 2015 Appl. Opt. 54 9513Google Scholar

    [19]

    Yamaguchi I, Zhang T 1997 Opt. Lett. 22 1268Google Scholar

    [20]

    Oshima T, Matsudo Y, Kakue T, Arai D, Shimobaba T, Ito T 2015 Opt. Commun. 350 270Google Scholar

    [21]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [22]

    Fienup J 1982 Appl. Opt. 21 2758Google Scholar

    [23]

    Latychevskaia T, Fink H W 2007 Phy. Rev. Lett. 98 233901Google Scholar

    [24]

    Rong L, Li Y, Liu S, Xiao W, Pan F, Wang D Y 2013 Opt. Laser Eng. 51 553Google Scholar

    [25]

    Yang G Z, Dong B Z, Gu B Y, Zhuang J Y, Ersoy O K 1994 Appl. Opt. 33 209Google Scholar

    [26]

    Zhang W H, Cao L C, David J B, Zhang H, Cang J, Jin G F 2018 Phy. Rev. Lett. 121 093902Google Scholar

    [27]

    Orzó L 2015 Opt. Express 23 16638Google Scholar

    [28]

    王凤鹏, 王大勇, 王云新, 戎路, 赵洁 2018 中国激光 45 0609001Google Scholar

    Wang F P, Wang D Y, Wang Y X, Rong L, Zhao J 2018 Chinese Journal of Lasers 45 0609001Google Scholar

    [29]

    Khare K, Ali P T S, Joseph J 2013 Opt. Express 21 5634Google Scholar

    [30]

    Wu X Y, Yu Y J, Zhou W J 2014 Opt. Express 22 19860Google Scholar

    [31]

    Zhong M, Cui J, Hyun J S, Pan L, Duan P, Zhang S 2020 Meas. Sci. Technol. 31 085003Google Scholar

    [32]

    Sanchez-Ortiga E, Ferraro P, Martinez-Corral M 2011 Opt. Soc. Am. A 28 1410Google Scholar

    [33]

    Zhong Z, Bai H Y, Shan M G, Zhang Y B, Guo L L 2017 Opt. Laser Eng. 97 9Google Scholar

    [34]

    Hao B G, Shan M G, Zhong Z, Diao M, Wang Y, Zhang Y B 2015 J. Opt. 17 035602Google Scholar

  • [1] 张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才. 基于数字全息的血红细胞显微成像技术. 物理学报, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [2] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计. 物理学报, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [3] 王雪光, 李明, 于娜娜, 席思星, 王晓雷, 郎利影. 基于空间角度复用和双随机相位的多图像光学加密方法. 物理学报, 2019, 68(24): 240503. doi: 10.7498/aps.68.20191362
    [4] 谢静, 张军勇, 岳阳, 张艳丽. 卢卡斯光子筛的聚焦特性研究. 物理学报, 2018, 67(10): 104201. doi: 10.7498/aps.67.20172260
    [5] 周宏强, 万玉红, 满天龙. 基于位相变更的非相干数字全息自适应成像. 物理学报, 2018, 67(4): 044202. doi: 10.7498/aps.67.20172202
    [6] 谷婷婷, 黄素娟, 闫成, 缪庄, 常征, 王廷云. 基于数字全息图的光纤折射率测量研究. 物理学报, 2015, 64(6): 064204. doi: 10.7498/aps.64.064204
    [7] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [8] 王大勇, 王云新, 郭莎, 戎路, 张亦卓. 基于多角度无透镜傅里叶变换数字全息的散斑噪声抑制成像研究. 物理学报, 2014, 63(15): 154205. doi: 10.7498/aps.63.154205
    [9] 卢明峰, 吴坚, 郑明. 数字全息周期像的产生机理及在抑制零级衍射上的应用. 物理学报, 2013, 62(9): 094207. doi: 10.7498/aps.62.094207
    [10] 李俊昌, 楼宇丽, 桂进斌, 彭祖杰, 宋庆和. 数字全息图取样模型的简化研究. 物理学报, 2013, 62(12): 124203. doi: 10.7498/aps.62.124203
    [11] 马骏, 袁操今, 冯少彤, 聂守平. 基于数字全息及复用技术的全场偏振态测试方法. 物理学报, 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [12] 李俊昌. 数字全息重建图像的焦深研究. 物理学报, 2012, 61(13): 134203. doi: 10.7498/aps.61.134203
    [13] 陈萍, 唐志列, 王娟, 付晓娣, 陈飞虎. 用Stokes参量法实现数字同轴偏振全息的研究. 物理学报, 2012, 61(10): 104202. doi: 10.7498/aps.61.104202
    [14] 崔华坤, 王大勇, 王云新, 刘长庚, 赵洁, 李艳. 无透镜傅里叶变换数字全息术中非共面误差的自动补偿算法. 物理学报, 2011, 60(4): 044201. doi: 10.7498/aps.60.044201
    [15] 徐先锋, 韩立立, 袁红光. 两步相移数字全息物光重建误差分析与校正. 物理学报, 2011, 60(8): 084206. doi: 10.7498/aps.60.084206
    [16] 尚英, 霍丙忠, 孟春宁, 袁景和. 并矢格林函数下的球形超透镜. 物理学报, 2010, 59(11): 8178-8183. doi: 10.7498/aps.59.8178
    [17] 赵贵敏, 陆明珠, 万明习, 方莉. 高分辨率扇形阵列超声激发振动声成像研究. 物理学报, 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [18] 向良忠, 邢达, 郭华, 杨思华. 高分辨率快速数字化光声CT乳腺肿瘤成像. 物理学报, 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [19] 李俊昌, 张亚萍, 许蔚. 高质量数字全息波面重建系统研究. 物理学报, 2009, 58(8): 5385-5391. doi: 10.7498/aps.58.5385
    [20] 申金媛, 李现国, 常胜江, 张延炘. 相位特征在三维物体识别中的应用. 物理学报, 2005, 54(11): 5157-5163. doi: 10.7498/aps.54.5157
计量
  • 文章访问数:  6581
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-26
  • 修回日期:  2021-03-18
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回