搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场对ECR中和器等离子体与电子引出影响的数值模拟研究

罗凌峰 杨涓 耿海 吴先明 牟浩

引用本文:
Citation:

磁场对ECR中和器等离子体与电子引出影响的数值模拟研究

罗凌峰, 杨涓, 耿海, 吴先明, 牟浩

Numerical Simulation Research about the Magnetic Field Influence on the Plasma and Electron Extraction of ECR Neutralizer

Luo Ling-Feng, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao
PDF
导出引用
  • 10厘米电子回旋共振离子推力器(ECRIT)的ECR中和器是关键部件,其内部磁场是影响中和器性能的重要因素.磁场的均匀性和磁阱位置是磁场特征的重要表现,制约等离子体与电势的分布规律、电子引出过程及中和器性能.本文分别建立磁场均匀性低、磁阱位于电子引出孔上游和磁场均匀性高、磁阱位于电子引出孔下游的ECR中和器PIC/MCC模型,在给定参数条件下,开展等离子体和电势分布规律及电子引出过程的数值模拟研究并分析其对中和器性能的影响.结果表明,磁场均匀性高、磁阱位于电子引出孔下游时,中和器内整体电势分布较均匀,电子容易朝磁阱区迁移,低引出电势引出高电子束流,其性能高于磁场均匀性低、磁阱内置的中和器.研究工作将为发展高性能的ECR中和器奠定重要基础.
    Electron cyclotron resonance (ECR) neutralizer is a key component of Electron Cyclotron Resonance Ion Thruster(ECRIT) with 10 cm diameter, which plays an important role in maintaining the spacecraft potential balance and neutralizing the ions in the plume region. Optimizing magnetic field distribution is an important ways to improve the properties of neutralizer, at the same time, the uniformity of the magnetic field and the position of the magnetic trap present the magnetic field characteristics and influence the plasma property, electron extraction procedure and beam current. In previous experimental researches, it was found that the beam current extraction performance of the two ECR neutralizers with different magnetic field uniformity and different magnetic trap locations is significantly different. However, it is difficult to reveal the physical phenomena and causes only through experiments, so numerical simulation is needed. Therefore PIC/MCC models for the ECR neutralizers with different uniformity of magnetic field and different position of magnetic trap are established. Under the given electron extraction potential, numerical simulations were accomplished to study, electron extraction procedure and analyze their influence on the performance of the neutralizer. The simulation results show that when the magnetic field uniformity is low and the magnetic trap is located upstream of extraction orifice, the electron migration from the magnetic trap to the outlet is restricted by the magnetic field and the electric field, then a higher potential energy is needed to extract the electron. otherwise when the magnetic field uniformity is high and the magnetic trap is located at the downstream of extraction orifice, electrons will migrate towards the magnet trap more likely. After the electron reaches the magnetic trap, under the action of the anode potential, the external potential is higher, and the external weak magnetic field almost loses its hold on the electrons, Therefore a large amount of electron beam can be extracted at low extraction potential. The research will lay an important foundation for the development of high-performance ECR neutralizer.
  • [1]

    Yang J, Mou H, Gen H, Wu X M 2023 J. Propuls. Tech. 44 78 (in Chinese) [杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 78]

    [2]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propuls. Power. 34 960-968

    [3]

    Tan R W, Yang J, Gen H, Wu X M 2023 Acta Phys. Sin. 72 175 (in Chinese) [谈人玮, 杨涓, 耿海, 吴先明, 牟浩 2023 物理学报 72 175]

    [4]

    Tsuru T, Kondo S, Yamamoto N, Nakashima H 2009 Transactions of The Japan Society for Aeronautical and Space Sciences, Space Technology Japan 7

    [5]

    Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 Journal of Propulsion and Power 23 544

    [6]

    Tsuda Y, Nakazawa S, Yoshikawa M, Saiki T, Terui F, Arakawa M, Abe M, Kitazato K, Sugita S, Tachibana S, Namiki N, Tanaka S, Okada T, Ikeda H, Watanabe S-i Hirabayashi M, Tsuda Y 2022 Hayabusa2 Asteroid Sample Return Mission (Elsevier) pp5-23

    [7]

    Kawaguchi J i, Fujiwara A, Uesugi T 2008 Acta Astronautica 62 639

    [8]

    Mou H, Jin Y Z, Yang J, Xia X, Fu Y L 2022 Chinese Physics B 31 075202

    [9]

    Zheng P, Wu J, Zhang Y, Che B, Li J 2021 Acta Astronautica 187 236

    [10]

    Luo L T, Yang J, Jin Y Z, Sun J, Han F 2016 Chinese Space Science and Technology 36 35 (in Chinese) [罗立涛, 杨涓, 金逸舟, 孙俊, 韩飞 2016 中国空间科学技术 36 35]

    [11]

    Luo L T, Yang J, Jin Y Z, Feng B B, Tang J M 2015 J. Northwest. Polytech. Univ. 33 395 (in Chinese) [罗立涛, 杨涓, 金逸舟, 冯冰冰, 汤明杰 2015 西北工业大学学报 33 395]

    [12]

    Meng H B, Yang J, Huang W B, Xia X, Fu Y L 2019 J.Astronaut. 40 1478 (in Chinese) [孟海波, 杨涓, 黄文斌, 夏旭, 付瑜亮, 胡展 2019 宇航学报 40 1478]

    [13]

    Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 49 87

    [14]

    Fu Y L, Yang J, Geng H, Wu X, Hu Z, Xia X 2021 Vacuum 184 109932

    [15]

    Gao Z Y 2022 M.S.Dissertationn (Xi'an: Northwestern Polytechnical University) (in Chinese) [高振业 2022 硕士学位论文(西安:西北工业大学)]

    [16]

    Nishiyama K, Kuninaka H 2008 Surface and Coatings Technology 202 5262

    [17]

    Fu Y L, Yang J, Jin Y, Xia X, Meng H B 2019 Acta Astronautica 164 387

    [18]

    Fu Y L 2022 Ph.D.Dissertationn (Xi'an: Northwestern Polytechnical University) (in Chinese) [付瑜亮 2022 博士学位论文(西安:西北工业大学)]

    [19]

    Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8701 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 物理学报 59 8701]

    [20]

    Jin Y Z 2018 Ph.D.Dissertationn (Xi'an: Northwestern Polytechnical University) (in Chinese) [金逸舟 2018 博士学位论文(西安:西北工业大学)]

    [21]

    Ikkoh Funaki I F, Hitoshi Kuninaka H K 2001 Japanese Journal of Applied Physics 40 2495

    [22]

    Xia X, Yang J, Gen H, Wu X M, Fu Y L, Mou H, Tan R W 2022 Acta Phys. Sin.71 164 (in Chinese) [夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮 2022 物理学报 71 164]

    [23]

    Chen F F 1974 Introduction to Plasma Physics (New York:Springer Science Business Media) pp139-180

  • [1] 付瑜亮, 张思远, 孙安邦, 马祖福, 王亚楠. 磁阵列微波放电中和器的电子引出机制. 物理学报, doi: 10.7498/aps.73.20240273
    [2] 谈人玮, 杨涓, 耿海, 吴先明, 牟浩. 氮气工质10厘米ECRIT中和器实验研究. 物理学报, doi: 10.7498/aps.72.20221951
    [3] 张罡, 杨国君, 何小中, 杜洋, 石金水, 李小安. 18 MeV自引出回旋加速器关键技术. 物理学报, doi: 10.7498/aps.71.20220934
    [4] 夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮. 不同磁路下微型ECR中和器电子引出的模拟研究. 物理学报, doi: 10.7498/aps.71.20211519
    [5] 夏旭, 杨涓, 耿海, WU Xian-Ming, 付瑜亮, 牟浩, 谈人玮. 不同磁路下微型ECR中和器电子引出的模拟研究. 物理学报, doi: 10.7498/aps.70.20211519
    [6] 于博, 张岩, 贺伟国, 杭观荣, 康小录, 赵青. 超声波电喷推力器羽流中和特性研究. 物理学报, doi: 10.7498/aps.67.20171972
    [7] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性. 物理学报, doi: 10.7498/aps.67.20180919
    [8] 李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军. 针-板空气间隙流注放电起始过程的三维PIC/MCC仿真研究. 物理学报, doi: 10.7498/aps.67.20172309
    [9] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究. 物理学报, doi: 10.7498/aps.67.20181260
    [10] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验. 物理学报, doi: 10.7498/aps.65.045201
    [11] 杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 彭凯, 刘腊群. 表面产生负氢离子引出MCC算法设计. 物理学报, doi: 10.7498/aps.62.025206
    [12] 杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 刘腊群, 彭凯, 夏蒙重. 体积产生负氢离子能量沉积及引出效率数值模拟研究. 物理学报, doi: 10.7498/aps.61.235201
    [13] 杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲. 基于负氢离子源的全三维PIC/MCC模拟算法研究. 物理学报, doi: 10.7498/aps.61.045204
    [14] 李小泽, 王建国, 童长江, 张 海. 充填不同气体相对论返波管特性的PIC-MCC模拟. 物理学报, doi: 10.7498/aps.57.4613
    [15] 郑飞腾, 杨中海, 金晓林. 空心阴极类火花放电初始电离过程的PIC/MCC模拟. 物理学报, doi: 10.7498/aps.57.990
    [16] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, doi: 10.7498/aps.55.5930
    [17] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, doi: 10.7498/aps.55.5935
    [18] 徐 涵, 常文蔚, 卓红斌, 银 燕. 优化脉冲间距的多脉冲尾流加速PIC模拟. 物理学报, doi: 10.7498/aps.52.2836
    [19] 吴衍青, 韩申生. 电子-离子碰撞对超热电子影响的PIC模拟计算. 物理学报, doi: 10.7498/aps.49.915
    [20] 熊家贵, 王德武. 离子引出的二维PIC-MCC模拟. 物理学报, doi: 10.7498/aps.49.2420
计量
  • 文章访问数:  26
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-07-16

/

返回文章
返回