搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁阵列微波放电中和器的电子引出机制

付瑜亮 张思远 孙安邦 马祖福 王亚楠

引用本文:
Citation:

磁阵列微波放电中和器的电子引出机制

付瑜亮, 张思远, 孙安邦, 马祖福, 王亚楠

Electron extraction mechanism of magnet array microwave discharge neutralizer

Fu Yu-Liang, Zhang Si-Yuan, Sun An-Bang, Ma Zu-Fu, Wang Ya-Nan
PDF
HTML
导出引用
  • 微波放电中和器作为微波离子推力器系统的重要组成部分, 在维持航天器电位平衡、中和羽流方面发挥着重要作用, 其电子引出性能直接关系到电推力器系统的工作状态. 在磁阵列微波放电中和器的磁场结构定型实验中, 发现调转磁阵列朝向后引出电流的伏安特性曲线差异极大. 由于磁阵列微波放电中和器的放电室直径仅10 mm, 介入式探针诊断对等离子体干扰大, 本文采用了一体化粒子模拟方法对中和器的工作过程进行仿真, 仿真结果与实验现象相符合. 通过对比不同磁场结构、工作电压下的等离子体参数分布, 发现引出孔附近的电势分布决定着中和器的电子引出能力; 并进一步揭示了离子在中和器电子引出过程中发挥的关键作用, 阐明了磁场结构对中和器电子引出能力的影响机制. 最后, 本文总结了微波放电中和器有效引出电子的两个必要条件: 1)磁场梯度指向引出孔, 引导等离子体迁移; 2)引出孔附近有足够的离子抬升电势, 降低或打破电势阱.
    Microwave discharge neutralizer is an important part of microwave discharge ion thruster system, which plays a vital role in maintaining potential balance between spacecraft and neutralizing ion beam. Its electron extraction property directly affects the operation condition of ion thruster system. In order to break through the power limit of miniature microwave discharge ion thruster, a magnet array microwave discharge ion thruster system is designed and tested. In the experiment on finalizing magnetic field structure of magnet array microwave discharge neutralizer, an interesting phenomenon is found that the I-V curves of electron current, after rotating the magnetic array orientation, are very different. Defining forward direction of magnet array can normally extract electrons, then backward direction of magnet array can hardly extract electrons. Because the diameter of discharge chamber is only 10 mm, it is too small to perform Langmuir probe diagnosis. And thus, an integrative particle-in-cell method is used to simulate the neutralizer operation processes of two different magnetic field structures, and for the sake of accuracy, real vacuum permittivity is used. The simulation results show good consistence with experimental phenomenon. In the initial discharge process, it is found that the magnetic field gradient leads to different plasma distributions; in electron extraction process, it is found that the potential distribution near the orifice determines the electron extraction property of the neutralizer. Through comparing the plasma parameter distributions under different magnetic field structures and operating voltages, an assumption that the ion is an important factor in electron extraction process is proposed. Then, a simulation that ions disappear artificially outside the orifice is conducted, and the simulation results show that electrons cannot be effectively extracted without ions near the orifice. According to the simulation and experiment results, two necessary conditions are summarized for electron extraction of the neutralizer. The first condition is magnetic field structure: the magnetic field gradient should point towards the orifice to guide plasma migration towards the orifice, the second one is potential distribution: there should be enough ions to lift the potential near the orifice for reducing or breaking the potential well. These two conditions can help understand the electron extraction mechanism of microwave discharge neutralizer and provide theoretical reference for optimizing the performance of neutralizer in future.
      通信作者: 孙安邦, anbang.sun@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52307183)资助的课题.
      Corresponding author: Sun An-Bang, anbang.sun@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52307183).
    [1]

    Nono A, Morishita T, Hosoda S, Tsukizaki R, Nishiyama K 2023 Acta Astronaut. 212 130Google Scholar

    [2]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 2208095

    Yang J, Mou H, Geng H, Wu X M 2023 J. Propuls. Tech. 44 2208095

    [3]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propuls. Power. 34 960Google Scholar

    [4]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Tech. 12 1884

    [5]

    Tsukizaki R, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 J. Propuls. Power. 30 91

    [6]

    Barquero S, Tabata K, Tsukizaki R, Merino M, Navarro-Cavallé J, Nishiyama K 2023 Acta Astronaut. 211 750Google Scholar

    [7]

    Sekine H, Minematsu R, Ataka Y, Ominetti P, Koizumi H, Komurasaki K 2022 J. Appl. Phys. 131 093302Google Scholar

    [8]

    Motoki T, Takasaki D, Koizumi H, Ataka Y, Komurasaki K, Takao Y 2022 Acta Astronaut. 196 231Google Scholar

    [9]

    Sato Y, Koizumi H, Nakano M, Takao Y 2020 Phys. Plasmas. 27 063505Google Scholar

    [10]

    Tsuru T, Kondo S, Yamamoto N, Nakashima H 2009 Trans. JSASS Aerospace Tech. 7 163

    [11]

    Yamamoto N, Maeda Y, Nakashima H, Watanabe H, Funaki I 2016 Trans. JSASS Aerospace Tech. 59 100

    [12]

    Foster J E, Patterson M J 2005 J. Propuls. Power. 21 862Google Scholar

    [13]

    夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮 2022 物理学报 71 045201Google Scholar

    Xia X, Yang J, Geng H, Wu X M, Fu Y L, Mou H, Tan R W 2022 Acta Phys. Sin. 71 045201Google Scholar

    [14]

    Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 Trans. JSASS Aerospace Tech. 49 87

    [15]

    Kubota K, Watanabe H, Yamamoto N, Nakashima H, Miyasaka T, Funaki I 2014 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland, OH, July 28–30, 2014 pp1–12

    [16]

    孟海波, 杨涓, 黄文斌, 夏旭, 付瑜亮, 胡展 2019 宇航学报 40 1478Google Scholar

    Meng H B, Yang J, Huang W B, Xia X, Fu Y L, Hu Z 2019 J. Astronaut. 40 1478Google Scholar

    [17]

    Hiramoto K, Nakagawa Y, Koizumi H, Takao Y 2017 Phys. Plasmas 24 064504Google Scholar

    [18]

    Sato Y, Koizumi H, Nakano M, Takao Y 2019 J. Appl. Phys. 126 243302Google Scholar

    [19]

    Fu Y L, Yang J, Geng H, Wu X M, Hu Z, Xia X 2021 Vacuum 184 109932Google Scholar

    [20]

    付瑜亮 2022 博士学位论文(西安: 西北工业大学)

    Fu Y L 2022 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [21]

    付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠 2024 物理学报 73 095203Google Scholar

    Fu Y L, Zhang S Y, Yang J Y, Sun A B, Wang Y N 2024 Acta Phys. Sin. 73 095203Google Scholar

    [22]

    Fu Y L, Yang J, Mou H, Tan R W, Xia X, Gao Z Y 2022 Comput. Phys. Commun. 278 8395

  • 图 1  磁阵列微波放电中和器结构简图

    Fig. 1.  Structure diagram of magnet array microwave discharge neutralizer.

    图 2  磁阵列微波放电中和器的磁场结构

    Fig. 2.  Magnetic field of magnet array microwave discharge neutralizer.

    图 3  磁阵列微波放电中和器伏安特性曲线

    Fig. 3.  I-V curves of magnet array microwave discharge neutralizer.

    图 4  计算域和边界条件

    Fig. 4.  Calculation region and boundary condition setting.

    图 5  初始放电仿真结果 (a)磁场结构A的电子密度分布; (b)磁场结构A的离子密度分布; (c)磁场结构B的电子密度分布; (d)磁场结构B的离子密度分布

    Fig. 5.  Initial discharge simulation results: (a) Electron density distribution of magnetic field structure A; (b) the ion density distribution of magnetic field structure A; (c) the electron density distribution of magnetic field structure B; (d) the ion density distribution of magnetic field structure B.

    图 6  电子引出仿真结果 (a)磁场结构A, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (b)磁场结构A, $ {\varphi }_{{\mathrm{a}}} $=80 V; (c)磁场结构B, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (d)磁场结构B, $ {\varphi }_{{\mathrm{a}}} $ = 80 V

    Fig. 6.  Simulation results of electron beam in extraction stage: (a) Magnetic field structure A, $ {\varphi }_{{\mathrm{a}}} $=40 V; (b) Magnetic field structure A, $ {\varphi }_{{\mathrm{a}}} $ = 80 V; (c) Magnetic field structure B, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (d) Magnetic field structure B, $ {\varphi }_{{\mathrm{a}}} $ = 80 V.

    图 7  电子引出阶段电势变化 (a)磁场结构A, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (b)磁场结构A, $ {\varphi }_{{\mathrm{a}}} $=80 V; (c)磁场结构B, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (d)磁场结构B, $ {\varphi }_{{\mathrm{a}}} $ = 80 V

    Fig. 7.  Potential distribution in extraction stage: (a) Magnetic field structure A, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (b) magnetic field structure A, $ {\varphi }_{{\mathrm{a}}} $ = 80 V; (c) magnetic field structure B, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (d) magnetic field structure B, $ {\varphi }_{{\mathrm{a}}} $=80 V.

    图 8  假设引出孔外无离子的仿真结果 (a)电子分布; (b)电势分布

    Fig. 8.  Electron beam (a) and potential distribution (b) assuming no ion outside orifice.

    表 1  参数设置

    Table 1.  Simulation parameter setting.

    参数 设定值
    微波频率/GHz 4.2
    微波功率/W 1
    氙气流量/sccm 0.3
    初始等离子体密度/m–3 1 × 1016
    初始宏粒子数量 10000
    时间步长/s 1 × 10–11
    下载: 导出CSV
  • [1]

    Nono A, Morishita T, Hosoda S, Tsukizaki R, Nishiyama K 2023 Acta Astronaut. 212 130Google Scholar

    [2]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 2208095

    Yang J, Mou H, Geng H, Wu X M 2023 J. Propuls. Tech. 44 2208095

    [3]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propuls. Power. 34 960Google Scholar

    [4]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Tech. 12 1884

    [5]

    Tsukizaki R, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 J. Propuls. Power. 30 91

    [6]

    Barquero S, Tabata K, Tsukizaki R, Merino M, Navarro-Cavallé J, Nishiyama K 2023 Acta Astronaut. 211 750Google Scholar

    [7]

    Sekine H, Minematsu R, Ataka Y, Ominetti P, Koizumi H, Komurasaki K 2022 J. Appl. Phys. 131 093302Google Scholar

    [8]

    Motoki T, Takasaki D, Koizumi H, Ataka Y, Komurasaki K, Takao Y 2022 Acta Astronaut. 196 231Google Scholar

    [9]

    Sato Y, Koizumi H, Nakano M, Takao Y 2020 Phys. Plasmas. 27 063505Google Scholar

    [10]

    Tsuru T, Kondo S, Yamamoto N, Nakashima H 2009 Trans. JSASS Aerospace Tech. 7 163

    [11]

    Yamamoto N, Maeda Y, Nakashima H, Watanabe H, Funaki I 2016 Trans. JSASS Aerospace Tech. 59 100

    [12]

    Foster J E, Patterson M J 2005 J. Propuls. Power. 21 862Google Scholar

    [13]

    夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮 2022 物理学报 71 045201Google Scholar

    Xia X, Yang J, Geng H, Wu X M, Fu Y L, Mou H, Tan R W 2022 Acta Phys. Sin. 71 045201Google Scholar

    [14]

    Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 Trans. JSASS Aerospace Tech. 49 87

    [15]

    Kubota K, Watanabe H, Yamamoto N, Nakashima H, Miyasaka T, Funaki I 2014 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland, OH, July 28–30, 2014 pp1–12

    [16]

    孟海波, 杨涓, 黄文斌, 夏旭, 付瑜亮, 胡展 2019 宇航学报 40 1478Google Scholar

    Meng H B, Yang J, Huang W B, Xia X, Fu Y L, Hu Z 2019 J. Astronaut. 40 1478Google Scholar

    [17]

    Hiramoto K, Nakagawa Y, Koizumi H, Takao Y 2017 Phys. Plasmas 24 064504Google Scholar

    [18]

    Sato Y, Koizumi H, Nakano M, Takao Y 2019 J. Appl. Phys. 126 243302Google Scholar

    [19]

    Fu Y L, Yang J, Geng H, Wu X M, Hu Z, Xia X 2021 Vacuum 184 109932Google Scholar

    [20]

    付瑜亮 2022 博士学位论文(西安: 西北工业大学)

    Fu Y L 2022 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [21]

    付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠 2024 物理学报 73 095203Google Scholar

    Fu Y L, Zhang S Y, Yang J Y, Sun A B, Wang Y N 2024 Acta Phys. Sin. 73 095203Google Scholar

    [22]

    Fu Y L, Yang J, Mou H, Tan R W, Xia X, Gao Z Y 2022 Comput. Phys. Commun. 278 8395

  • [1] 付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠. 微波离子推力器中磁场发散区电子加热模式研究. 物理学报, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [2] 罗凌峰, 杨涓, 耿海, 吴先明, 牟浩. 磁场对电子回旋共振中和器等离子体与电子引出影响的数值模拟. 物理学报, 2024, 73(16): 165203. doi: 10.7498/aps.73.20240612
    [3] 李鑫, 曾明, 刘辉, 宁中喜, 于达仁. 应用于电推进的碘工质电子回旋共振等离子体源. 物理学报, 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [4] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理. 物理学报, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [5] 谈人玮, 杨涓, 耿海, 吴先明, 牟浩. 氮气工质10厘米ECRIT中和器实验研究. 物理学报, 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [6] 付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩. 2 cm电子回旋共振离子源猝灭现象模拟. 物理学报, 2022, 71(8): 085203. doi: 10.7498/aps.71.20212151
    [7] 武文斌, 彭士香, 张艾霖, 周海京, 马腾昊, 蒋耀湘, 李凯, 崔步坚, 郭之虞, 陈佳洱. 微型电子回旋共振离子源的全局模型. 物理学报, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [8] 夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮. 不同磁路下微型ECR中和器电子引出的模拟研究. 物理学报, 2022, 71(4): 045201. doi: 10.7498/aps.71.20211519
    [9] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟. 物理学报, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [10] 夏旭, 杨涓, 耿海, WU Xian-Ming, 付瑜亮, 牟浩, 谈人玮. 不同磁路下微型ECR中和器电子引出的模拟研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211519
    [11] 夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展. 磁路和天线位置对2 cm电子回旋共振离子推力器性能影响的实验研究. 物理学报, 2019, 68(23): 235202. doi: 10.7498/aps.68.20191122
    [12] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验. 物理学报, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [13] 汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰. 微型电子回旋共振离子推力器离子源结构优化实验研究. 物理学报, 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [14] 高碧荣, 刘悦. 电子回旋共振等离子体密度均匀性的数值研究. 物理学报, 2011, 60(4): 045201. doi: 10.7498/aps.60.045201
    [15] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [16] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [17] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [18] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [19] 宫野, 温晓军, 张鹏云, 邓新绿. 圆柱模型下电子回旋共振微波等离子体离子输运过程的数值研究. 物理学报, 1997, 46(12): 2376-2383. doi: 10.7498/aps.46.2376
    [20] 李壮, 徐承和. 电子回旋共振放大器的理论分析. 物理学报, 1983, 32(10): 1237-1246. doi: 10.7498/aps.32.1237
计量
  • 文章访问数:  1367
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-19
  • 修回日期:  2024-03-23
  • 上网日期:  2024-04-09
  • 刊出日期:  2024-06-05

/

返回文章
返回