搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面产生负氢离子引出MCC算法设计

杨超 刘大刚 王辉辉 杨宇鹏 廖方燕 彭凯 刘腊群

引用本文:
Citation:

表面产生负氢离子引出MCC算法设计

杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 彭凯, 刘腊群

The MCC numerical algorithm of the extraction of the surface-produced negative hydrogen ions

Yang Chao, Liu Da-Gang, Wang Hui-Hui, Yang Yu-Peng, Liao Fang-Yan, Peng Kai, Liu La-Qun
PDF
导出引用
  • 本文深入研究负氢离子输运及引出物理机理, 理论分析了交换电荷反应及库仑碰撞过程, 并设计了相应数值计算模块. 在此基础上, 采用有限差分法计算负氢离子所受洛伦兹力, 运用蒙特卡罗碰撞方法处理负氢离子与其他粒子间的碰撞, 成功研制了表面产生负氢离子输运及引出的全三维MCC算法, 结合国外热门离子源JAEA 10A离子源进行模拟验证, 结果显示: 随着过滤磁场增大, 引出离子数越大, 离子源空间生存离子总数越小; 当过滤磁场较小时, 气压越大引出离子数越多, 当过滤磁场较大时, 气压越小引出离子数越多.
    The physical mechanism of the negative hydrogen ion transportation and extraction is investigated, the charge exchange reaction and coulomb collision process are analysed thearelically, and the corresponding numerical calculation module is also designed. Therefore, using the finite difference time domain method to calculate the lorentz force of the negative hydrogen ions, and through Monte Carlo method to deal with the collision between negative hydrogen ions and other particles. Finally, it is successful to develop the 3D MCC algorithm of the transportation and extraction of the surface-produced negative hydrogen ions, and simulate the foreign popular ion source JAEA 10 A. The results show that with the increase of the filter magnetic fiel, the bigger the number of extracted ions, the smaller the number of ions in negative hydrogen ions source is, that with the filter magnetic filed is small, the greater the pressure, the bigger the number of extracted ions is, and that when the filter magnetic filed is big, the smaller the pressure, the bigger the number of extracted ions is.
    • 基金项目: 国家自然科学基金(批准号: 11175040)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175040).
    [1]

    Shigefumi M, Fukumasa O 2008 Rev. Sci. Instrum. 79 02A526

    [2]

    Takado N, Tobari H, Inoue T, Hanatani J, Hatayama A, Hanada M, Kashiwagi M, Sakamoto K 2008 Journal of Applied Physics 103 053302

    [3]

    Kameyama H, Matsushita D, Koga S, Terasaki R, Hatayama A 2011 Second International Symposium on Ions, Beams and Sources, Takayama, Japan. November 16-19, 2010 p39

    [4]

    Yang C, Liu D G, Wang X M, Liu L Q, Wang X Q, Liu S G 2012 Acta Phys. Sin. 61 045204 (in Chinese) [杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲 2012 物理学报 61 045204]

    [5]

    Yang C, Liu D G, Chen Y, Xia M Z, Wang X Q, Wang X M 2012 Acta Phys. Sin. 61 135203 (in Chinese) [杨超, 刘大刚, 陈 颖, 夏蒙重, 王学琼, 王小敏 2012 物理学报 61 135203]

    [6]

    Yang C, Liu D G, Wang X Q, Wang X M, Xia M Z, Peng K 2012 Acta Phys. Sin. 61 105204 (in Chinese) [杨超, 刘大刚, 王学琼, 王小敏, 夏蒙重, 彭凯 2012 物理学报 61 105204]

    [7]

    Chiaming W, Tungyou L, Russel C, Bruce I C, Andris M D 2008 Journal of Computational Physics 227 4308

    [8]

    Terasaki R, Fujino I, Hatayama A, Mizuno T, Inoue T 2010 Review of Scientifc Instruments 81 02A703

    [9]

    Makino K, Sakurabayashi T, Hatayama A, Miyamoto K, Ogasawara M 2002 Rev. Sci. Instrum. 73 1051

    [10]

    Matsushita N, Takado N, Hatayama A, Inoue T 2008 Review of Scientifc Instruments 79 02A527

  • [1]

    Shigefumi M, Fukumasa O 2008 Rev. Sci. Instrum. 79 02A526

    [2]

    Takado N, Tobari H, Inoue T, Hanatani J, Hatayama A, Hanada M, Kashiwagi M, Sakamoto K 2008 Journal of Applied Physics 103 053302

    [3]

    Kameyama H, Matsushita D, Koga S, Terasaki R, Hatayama A 2011 Second International Symposium on Ions, Beams and Sources, Takayama, Japan. November 16-19, 2010 p39

    [4]

    Yang C, Liu D G, Wang X M, Liu L Q, Wang X Q, Liu S G 2012 Acta Phys. Sin. 61 045204 (in Chinese) [杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲 2012 物理学报 61 045204]

    [5]

    Yang C, Liu D G, Chen Y, Xia M Z, Wang X Q, Wang X M 2012 Acta Phys. Sin. 61 135203 (in Chinese) [杨超, 刘大刚, 陈 颖, 夏蒙重, 王学琼, 王小敏 2012 物理学报 61 135203]

    [6]

    Yang C, Liu D G, Wang X Q, Wang X M, Xia M Z, Peng K 2012 Acta Phys. Sin. 61 105204 (in Chinese) [杨超, 刘大刚, 王学琼, 王小敏, 夏蒙重, 彭凯 2012 物理学报 61 105204]

    [7]

    Chiaming W, Tungyou L, Russel C, Bruce I C, Andris M D 2008 Journal of Computational Physics 227 4308

    [8]

    Terasaki R, Fujino I, Hatayama A, Mizuno T, Inoue T 2010 Review of Scientifc Instruments 81 02A703

    [9]

    Makino K, Sakurabayashi T, Hatayama A, Miyamoto K, Ogasawara M 2002 Rev. Sci. Instrum. 73 1051

    [10]

    Matsushita N, Takado N, Hatayama A, Inoue T 2008 Review of Scientifc Instruments 79 02A527

计量
  • 文章访问数:  2415
  • PDF下载量:  559
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-15
  • 修回日期:  2012-08-21
  • 刊出日期:  2013-01-05

表面产生负氢离子引出MCC算法设计

  • 1. 电子科技大学物理电子学院, 成都 610054
    基金项目: 

    国家自然科学基金(批准号: 11175040)资助的课题.

摘要: 本文深入研究负氢离子输运及引出物理机理, 理论分析了交换电荷反应及库仑碰撞过程, 并设计了相应数值计算模块. 在此基础上, 采用有限差分法计算负氢离子所受洛伦兹力, 运用蒙特卡罗碰撞方法处理负氢离子与其他粒子间的碰撞, 成功研制了表面产生负氢离子输运及引出的全三维MCC算法, 结合国外热门离子源JAEA 10A离子源进行模拟验证, 结果显示: 随着过滤磁场增大, 引出离子数越大, 离子源空间生存离子总数越小; 当过滤磁场较小时, 气压越大引出离子数越多, 当过滤磁场较大时, 气压越小引出离子数越多.

English Abstract

参考文献 (10)

目录

    /

    返回文章
    返回