搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒙特卡罗模拟中相关变量随机数序列的产生方法

文德智 卓仁鸿 丁大杰 郑慧 成晶 李正宏

引用本文:
Citation:

蒙特卡罗模拟中相关变量随机数序列的产生方法

文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏

Generation of correlated pseudorandom variables in Monte Carlo simulation

Wen De-Zhi, Zhuo Ren-Hong, Ding Da-Jie, Zheng Hui, Cheng Jing, Li Zheng-Hong
PDF
导出引用
  • 蒙特卡罗模拟有时需要对多维相关随机变量进行模拟抽样. 本文介绍基于Choesky因子线性变换-非线性变换产生具有指定边缘分布和相关系数的多维相关随机变量抽样序列的一般方法, 给出一种简单易行的高效数值实现途径和一些模拟结果. 模拟结果表明, 该方法产生的各随机变量抽样序列间具有预期要求的相关性, 并能通过指定边缘分布Kolmogorov-Smirnov非参数假设检验. 对该方法应用中的一些限制问题进行了讨论.
    Correlated pseudorandom variables with prescribed marginal distribution functions sometimes are required in simulation such as in Monte Carlo studies. In this paper, we present a general procedure and a simple but effective numerical approach to generating correlated random variables sampling sequence with prescribed marginal probability distribution functions and correlation coefficient matrix based on linear transformation-nonlinear transformation with Choesky factor. Some simulation results are reported. Simulation results show that the collections of random numbers generated by the presented procedure have desired correlations and pass the Kolmogorov-Smirnov non-parametric hypothesis test of specified marginal distribution. Some restrictions on the application of this method are discussed.
    [1]

    Pei Lu cheng 1989 Computer Stochastic Simulation (Changsha: Hunan Science and technology Press) p1 (in Chinese) [裴鹿成 1989 计算机随机模拟 (长沙: 湖南科学技术出版社) 第1页]

    [2]

    Xu S Y 2006 Monte Carlo Method and its Application in Nuclear Physics Experiment (2nd Ed.) (Beijing: Atomic Energy Press) p1 (in Chinese) [许淑艳 2006 蒙特卡罗方法在实验核物理中的应用 (第二版) (北京:原子能出版社) 第1页]

    [3]

    Ivan T D 2008 Monte Carlo Methods for Applied Scientists (Singapore: World Scientific Publishing Co. Pte. Ltd.) p1

    [4]

    Peter J 2002 Monte Carlo methods in finance (Chichester: John Wiley & Sons, Inc.) p1

    [5]

    Cox M G, Siebert B R L 2006 Metrologia 43 S178

    [6]

    Matthew N O S 2009 Monter Carlo Methods for Electromagnetics (Boca Raton: CRC Press Taylor & Francis Group)P1

    [7]

    Landau D P, Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics (2nd Ed.) (New York: Cambridge University Press) p1

    [8]

    Ferguson D M, Siepmann J I, Truhlar D G 1999 Monte Carlo Methods in Chemical Physics (New York: John Wiley & Sons, Inc.) p1

    [9]

    Moonan W J 1957 J. Amer. Statist. Ass. 52 247

    [10]

    Box G E P, Muller M E 1958 Ann. Math. Statist. 29 610

    [11]

    Paul B, Fox B L, Linus E S (Translated by Yang Weigao) 1991 A guide to Simulation (Beijing: Science Press) p186 (in Chinese) [(美)布雷特利等著 杨惟高等译 1991 模拟导论(北京:机械工业出版社) 第186页]

    [12]

    Xu Z J 1985 Monte Carlo Method (Shanghai: Shanghai Science and Technology Press) p132 (in Chinese) 徐钟济 1985 蒙特卡罗方法上海:上海科学技术出版社 第132页)

    [13]

    Zhu B R 1987 Introduction to Monte Carlo Method (Ji-nan: Shandong University Press) p108 (in Chinese) [朱本仁 1987 蒙特卡罗方法引论 (济南: 山东大学出版社 第108页]

    [14]

    Niederreiter H 1992 Random Number Generation and Quasi-Monte Carlo Methods(Philadelphia: Society for Industrial and Applied Mathematics)P161

    [15]

    Rubinstein R, Kroese D P 2008 Simulation and the monte carlo method (2nd Ed.)(Hoboken: John Wiley & Sons, Inc.) p65

    [16]

    Kalos M H, Whitlock P A 2008 Monte Carlo Methods (2nd Ed.) (Weinheim: WILEY-VCH Verlag GmbH & Co.) p35

    [17]

    li S T, Hammond J L 1975 IEEE Transactions on Systems: Man, and Cybernetics SMC-5 557

    [18]

    Ronald L I, Conover W J 1982 Communications in Statistics-Simulation and Computation 11 311

    [19]

    Ronald L I, James M D 1982 Communications in Statistics-Simulation and Computation 11 335

    [20]

    Charles N H 1999 Risk Analysis 19 1205

    [21]

    Chen J T 2005 European Journal of Operational Research 167 226

    [22]

    Michael F 1999 Communications in Statistics-Simulation and Computation 28 785

    [23]

    Jing C 2005 M. S. Dissertation (Dalian: Dalian University of Technology) p31 (in Chinese) [金畅 2005 硕士学位论文(大连: 大连理工大学)第31页]

    [24]

    Wang Z K 1976 Probability theory and its application (1st Ed.) (Beijing: Science press) P105 (in Chinese) [王梓坤 1976 概率论基础及其应用(第一版)(北京:科学出版社) 第105页]

    [25]

    Salter M J, Ridler N M, Cox M G 2000 Technical Report CETM 22 (Teddington: National Physical Laboratory) p14

    [26]

    Nelsen R B 2006 An introduction to Copulas (2nd Ed.) (New York: Springer) p1

    [27]

    Zhang Y T 2002 Statistical Study 4 48 (in Chinese) [张尧庭 2002 统计研究 4 48]

  • [1]

    Pei Lu cheng 1989 Computer Stochastic Simulation (Changsha: Hunan Science and technology Press) p1 (in Chinese) [裴鹿成 1989 计算机随机模拟 (长沙: 湖南科学技术出版社) 第1页]

    [2]

    Xu S Y 2006 Monte Carlo Method and its Application in Nuclear Physics Experiment (2nd Ed.) (Beijing: Atomic Energy Press) p1 (in Chinese) [许淑艳 2006 蒙特卡罗方法在实验核物理中的应用 (第二版) (北京:原子能出版社) 第1页]

    [3]

    Ivan T D 2008 Monte Carlo Methods for Applied Scientists (Singapore: World Scientific Publishing Co. Pte. Ltd.) p1

    [4]

    Peter J 2002 Monte Carlo methods in finance (Chichester: John Wiley & Sons, Inc.) p1

    [5]

    Cox M G, Siebert B R L 2006 Metrologia 43 S178

    [6]

    Matthew N O S 2009 Monter Carlo Methods for Electromagnetics (Boca Raton: CRC Press Taylor & Francis Group)P1

    [7]

    Landau D P, Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics (2nd Ed.) (New York: Cambridge University Press) p1

    [8]

    Ferguson D M, Siepmann J I, Truhlar D G 1999 Monte Carlo Methods in Chemical Physics (New York: John Wiley & Sons, Inc.) p1

    [9]

    Moonan W J 1957 J. Amer. Statist. Ass. 52 247

    [10]

    Box G E P, Muller M E 1958 Ann. Math. Statist. 29 610

    [11]

    Paul B, Fox B L, Linus E S (Translated by Yang Weigao) 1991 A guide to Simulation (Beijing: Science Press) p186 (in Chinese) [(美)布雷特利等著 杨惟高等译 1991 模拟导论(北京:机械工业出版社) 第186页]

    [12]

    Xu Z J 1985 Monte Carlo Method (Shanghai: Shanghai Science and Technology Press) p132 (in Chinese) 徐钟济 1985 蒙特卡罗方法上海:上海科学技术出版社 第132页)

    [13]

    Zhu B R 1987 Introduction to Monte Carlo Method (Ji-nan: Shandong University Press) p108 (in Chinese) [朱本仁 1987 蒙特卡罗方法引论 (济南: 山东大学出版社 第108页]

    [14]

    Niederreiter H 1992 Random Number Generation and Quasi-Monte Carlo Methods(Philadelphia: Society for Industrial and Applied Mathematics)P161

    [15]

    Rubinstein R, Kroese D P 2008 Simulation and the monte carlo method (2nd Ed.)(Hoboken: John Wiley & Sons, Inc.) p65

    [16]

    Kalos M H, Whitlock P A 2008 Monte Carlo Methods (2nd Ed.) (Weinheim: WILEY-VCH Verlag GmbH & Co.) p35

    [17]

    li S T, Hammond J L 1975 IEEE Transactions on Systems: Man, and Cybernetics SMC-5 557

    [18]

    Ronald L I, Conover W J 1982 Communications in Statistics-Simulation and Computation 11 311

    [19]

    Ronald L I, James M D 1982 Communications in Statistics-Simulation and Computation 11 335

    [20]

    Charles N H 1999 Risk Analysis 19 1205

    [21]

    Chen J T 2005 European Journal of Operational Research 167 226

    [22]

    Michael F 1999 Communications in Statistics-Simulation and Computation 28 785

    [23]

    Jing C 2005 M. S. Dissertation (Dalian: Dalian University of Technology) p31 (in Chinese) [金畅 2005 硕士学位论文(大连: 大连理工大学)第31页]

    [24]

    Wang Z K 1976 Probability theory and its application (1st Ed.) (Beijing: Science press) P105 (in Chinese) [王梓坤 1976 概率论基础及其应用(第一版)(北京:科学出版社) 第105页]

    [25]

    Salter M J, Ridler N M, Cox M G 2000 Technical Report CETM 22 (Teddington: National Physical Laboratory) p14

    [26]

    Nelsen R B 2006 An introduction to Copulas (2nd Ed.) (New York: Springer) p1

    [27]

    Zhang Y T 2002 Statistical Study 4 48 (in Chinese) [张尧庭 2002 统计研究 4 48]

  • [1] 上官丹骅, 闫威华, 魏军侠, 高志明, 陈艺冰, 姬志成. 多物理耦合计算中动态输运问题高效蒙特卡罗模拟方法. 物理学报, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [2] 邓力, 李瑞, 王鑫, 付元光. 特征γ射线谱分析的蒙特卡罗模拟技术. 物理学报, 2020, 69(11): 112801. doi: 10.7498/aps.69.20200279
    [3] 上官丹骅, 姬志成, 邓力, 李瑞, 李刚, 付元光. 蒙特卡罗临界计算全局计数问题新策略研究. 物理学报, 2019, 68(12): 122801. doi: 10.7498/aps.68.20182276
    [4] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟. 物理学报, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [5] 李树. 光子与相对论麦克斯韦分布电子散射截面的蒙特卡罗计算方法. 物理学报, 2018, 67(21): 215201. doi: 10.7498/aps.67.20180932
    [6] 马续波, 刘佳艺, 徐佳意, 鲁凡, 陈义学. 相关变量随机数序列产生方法. 物理学报, 2017, 66(16): 160201. doi: 10.7498/aps.66.160201
    [7] 上官丹骅, 邓力, 张宝印, 姬志成, 李刚. 非定常输运问题适应于消息传递并行编程环境的香农熵计算方法. 物理学报, 2016, 65(14): 142801. doi: 10.7498/aps.65.142801
    [8] 上官丹骅, 邓力, 李刚, 张宝印, 马彦, 付元光, 李瑞, 胡小利. 蒙特卡罗临界计算全局计数效率新算法研究. 物理学报, 2016, 65(6): 062801. doi: 10.7498/aps.65.062801
    [9] 上官丹骅, 李刚, 邓力, 张宝印, 李瑞, 付元光. 反应堆蒙特卡罗临界模拟中均匀裂变源算法的改进. 物理学报, 2015, 64(5): 052801. doi: 10.7498/aps.64.052801
    [10] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究. 物理学报, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [11] 丛东亮, 许朋, 王叶兵, 常宏. 锶热原子束二维准直的动力学过程的蒙特卡罗模拟及实验研究. 物理学报, 2013, 62(15): 153702. doi: 10.7498/aps.62.153702
    [12] 杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟. 物理学报, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [13] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [14] 李鹏, 许州, 黎明, 杨兴繁. 金刚石薄膜中二次电子输运的蒙特卡罗模拟. 物理学报, 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [15] 赵学峰, 李三伟, 蒋刚, 王传珂, 李志超, 胡峰, 李朝光. 超热电子与金黑腔靶作用产生硬X射线的蒙特卡罗模拟. 物理学报, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [16] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真. 物理学报, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [17] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [18] 赵宗清, 丁永坤, 谷渝秋, 王向贤, 洪 伟, 王 剑, 郝轶聃, 袁永腾, 蒲以康. 超短超强激光与铜靶相互作用产生Kα源的蒙特卡罗模拟. 物理学报, 2007, 56(12): 7127-7131. doi: 10.7498/aps.56.7127
    [19] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真. 物理学报, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [20] 郝樊华, 胡广春, 刘素萍, 龚 建, 向永春, 黄瑞良, 师学明, 伍 钧. 钚体源样品γ能谱计算的蒙特卡罗方法. 物理学报, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
计量
  • 文章访问数:  9950
  • PDF下载量:  14806
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-05
  • 修回日期:  2012-06-14
  • 刊出日期:  2012-11-05

蒙特卡罗模拟中相关变量随机数序列的产生方法

  • 1. 中国工程物理研究院核物理与化学研究所, 绵阳 621900

摘要: 蒙特卡罗模拟有时需要对多维相关随机变量进行模拟抽样. 本文介绍基于Choesky因子线性变换-非线性变换产生具有指定边缘分布和相关系数的多维相关随机变量抽样序列的一般方法, 给出一种简单易行的高效数值实现途径和一些模拟结果. 模拟结果表明, 该方法产生的各随机变量抽样序列间具有预期要求的相关性, 并能通过指定边缘分布Kolmogorov-Smirnov非参数假设检验. 对该方法应用中的一些限制问题进行了讨论.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回