搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于交替隐式有限差分法的快速早期乳腺癌时域微波断层成像

陈碧云 张业荣 王磊 王芳芳

引用本文:
Citation:

基于交替隐式有限差分法的快速早期乳腺癌时域微波断层成像

陈碧云, 张业荣, 王磊, 王芳芳

Microwave tomography for early breast cancer detection based on the alternating direction implicit finite-difference time-domain method

Chen Bi-Yun, Zhang Ye-Rong, Wang Lei, Wang Fang-Fang
PDF
导出引用
  • 采用时域微波断层成像技术进行早期乳腺癌检测能够准确地获得乳房的电参数分布, 具有明确的物理解释和医学诊断价值. 临床应用讲究即时性, 为了提高检测的速度, 本文将交替隐式有限差分法应用到乳腺癌检测中, 基于正反演时间步进成像算法进行成像分析, 结果显示在保证精度的前提下, 采用交替隐式有限差分法的成像时间可缩短为传统时域有限差分法的23%, 提高了微波断层成像技术的临床可应用性.
    In microwave tomography (MWT), electric-parameter distributions of the breast can be reconstructed to detect the early-breast-cancer, which has a specific physical explanation and medical diagnostic value. In time-domain, the finite-difference time-domain (FDTD) method is usually applied to these problems. However, due to the constraint of Courant-Friedrich-Levy (CFL) stability condition, the time step should be small enough to well match the small fine cells, which begets an increasing computational cost, such as the central processing unit (CPU) time. For real-time clinical, it is very important and essential to look for efficient methods to improve the computational efficiency. The alternating-direction implicit finite-difference time-domain (ADI-FDTD) method, on the other hand, provides a larger time step than that the CFL stability condition limitation could set. In order to shorten the time of imaging and improve the detection efficiency, the ADI-FDTD method is first used for the early-breast-cancer detection in this paper. MWT for breast cancer detection requires solving nonlinear inverse scattering problems. Most nonlinear inversion algorithms require solving a number of forward scattering problems followed by an optimization procedure. Therefore, we turn the inverse scattering problem into an optimization question according to the least squares criterion. The optimization procedure aims at minimizing the error between measured scattered fields and estimated scattered fields by the forward solver. Nonlinear reconstruction algorithm is used to solve an update for the scattering object properties used in our breast model. This iteration process is repeated until the convergence between the measured and estimated data is obtained. The specific process of the iteration method is divided into two steps: the forward step, which is to solve a forward problem for a scattering object with estimated electrical properties, and the backward step, which is to solve adjoint fields by introducing the Lagrange multiplier penalty function. Both the forward and backward calculations are conducted by using the ADI-FDTD method. The algorithm is evaluated for a two-dimensional (2D) semicircle breast model with tumors. We compare the imaging results obtained by the ADI-FDTD method for various time steps with the results obtained by the conventional FDTD method and the real distribution. The results agree well, the simulation results prove that the imaging time by using this ADI-FDTD method can be reduced to 23% that by the conventional FDTD method. In addition, the simulation results suggest that the ADI-FDTD method can be more efficient if higher resolution is required, thus further enhancing the clinical applicability of MWT.
      通信作者: 张业荣, zhangyr@njupt.edu.cn
      Corresponding author: Zhang Ye-Rong, zhangyr@njupt.edu.cn
    [1]

    Siegel R, Ma J, Zou Z H, Jemal A 2014 Ca-Cancer J. Clin. 64 9

    [2]

    Ahmedin J, Rebecca S, Xu J, Elizabeth W 2010 Ca-Cancer J. Clin. 60 277

    [3]

    Smith-Bindman R, Chu P, Miglioretti D L, Quale C, Rosenberg R D, Cutter G, Geller B, Bacchetti P, Sickles E A, Kerlikowske K 2005 J. Natl. Cancer I. 97 358

    [4]

    Guo B 2007 Ph. D. Dissertation (USA Florida: Florida University)

    [5]

    Hagness S C, Taflove A, Bridges J E 1998 IEEE Trans. Biomed. Eng. 45 1470

    [6]

    Fear E C, Stuchly M A 1999 IEEE Microwave. Guided Wave Lett. 9 470

    [7]

    Rubaek T, Meaney P, Meincke P, Paulsen K D 2007 IEEE Trans. Antennas Propag. 55 2320

    [8]

    Meaney P M, Fanning M W, Li D, Poplack S P 2000 IEEE Trans. Microwave Theory Techn. 48 1841

    [9]

    Bindu G N, Abraham S J, Lonappan A, Thomas V, Aanandan C K, Mathew K T 2006 Prog. Electromagn. Res. 58 149

    [10]

    Miyakawa M, Ishida T, Watanabe M 2004 26th annual International Conference of the IEEE Engineering in Medicine and Biology Society San Francisco, California, September 1-5, 2004 p1427

    [11]

    Andreas F, Parham H, Mikael P 2006 IEEE Trans. Biomed. Eng. 53 1594

    [12]

    Johnson J E, Takashi T, Toshiyuki T 2008 IEEE Trans. Biomed. Eng. 55 1941

    [13]

    Gustafsson M, He S 1999 Math. Comput. Simulat. Math. 50 541

    [14]

    Gustafsson M, He S 2000 Radio Sci. 35 525

    [15]

    Gustafsson M 2000 Ph. D. Dissertation (Sweden Lund: Lund University)

    [16]

    Takenaka T, Tanaka T, Harada H, He S 1998 Microw. Opt. Techn. Lett. 16 292

    [17]

    Takenaka T, Jia H, Tanaka T 2000 J. Electromagnet. Wave. 14 1609

    [18]

    Takenaka T, Zhou H, Tanaka T 2003 J. Opt. Soc. Am. A 20 1867

    [19]

    Rekanos I T, RIsNen A 2003 IEEE Trans. Magn. 39 1381

    [20]

    Rekanos I T 2003 J. Electromagnet. Wave. 17 271

    [21]

    Liu G D, Zhang Y R 2010 Acta Phys. Sin. 59 6969 (in Chinese) [刘广东, 张业荣 2010 物理学报 59 6969]

    [22]

    Liu G D, Zhang Y R 2010 Chin. J. Radio 25 1175 (in Chinese) [刘广东, 张业荣 2010 电波科学学报 25 1175]

    [23]

    Namiki T 1999 IEEE Trans. Microwave. Theory Techn. 47 2003

  • [1]

    Siegel R, Ma J, Zou Z H, Jemal A 2014 Ca-Cancer J. Clin. 64 9

    [2]

    Ahmedin J, Rebecca S, Xu J, Elizabeth W 2010 Ca-Cancer J. Clin. 60 277

    [3]

    Smith-Bindman R, Chu P, Miglioretti D L, Quale C, Rosenberg R D, Cutter G, Geller B, Bacchetti P, Sickles E A, Kerlikowske K 2005 J. Natl. Cancer I. 97 358

    [4]

    Guo B 2007 Ph. D. Dissertation (USA Florida: Florida University)

    [5]

    Hagness S C, Taflove A, Bridges J E 1998 IEEE Trans. Biomed. Eng. 45 1470

    [6]

    Fear E C, Stuchly M A 1999 IEEE Microwave. Guided Wave Lett. 9 470

    [7]

    Rubaek T, Meaney P, Meincke P, Paulsen K D 2007 IEEE Trans. Antennas Propag. 55 2320

    [8]

    Meaney P M, Fanning M W, Li D, Poplack S P 2000 IEEE Trans. Microwave Theory Techn. 48 1841

    [9]

    Bindu G N, Abraham S J, Lonappan A, Thomas V, Aanandan C K, Mathew K T 2006 Prog. Electromagn. Res. 58 149

    [10]

    Miyakawa M, Ishida T, Watanabe M 2004 26th annual International Conference of the IEEE Engineering in Medicine and Biology Society San Francisco, California, September 1-5, 2004 p1427

    [11]

    Andreas F, Parham H, Mikael P 2006 IEEE Trans. Biomed. Eng. 53 1594

    [12]

    Johnson J E, Takashi T, Toshiyuki T 2008 IEEE Trans. Biomed. Eng. 55 1941

    [13]

    Gustafsson M, He S 1999 Math. Comput. Simulat. Math. 50 541

    [14]

    Gustafsson M, He S 2000 Radio Sci. 35 525

    [15]

    Gustafsson M 2000 Ph. D. Dissertation (Sweden Lund: Lund University)

    [16]

    Takenaka T, Tanaka T, Harada H, He S 1998 Microw. Opt. Techn. Lett. 16 292

    [17]

    Takenaka T, Jia H, Tanaka T 2000 J. Electromagnet. Wave. 14 1609

    [18]

    Takenaka T, Zhou H, Tanaka T 2003 J. Opt. Soc. Am. A 20 1867

    [19]

    Rekanos I T, RIsNen A 2003 IEEE Trans. Magn. 39 1381

    [20]

    Rekanos I T 2003 J. Electromagnet. Wave. 17 271

    [21]

    Liu G D, Zhang Y R 2010 Acta Phys. Sin. 59 6969 (in Chinese) [刘广东, 张业荣 2010 物理学报 59 6969]

    [22]

    Liu G D, Zhang Y R 2010 Chin. J. Radio 25 1175 (in Chinese) [刘广东, 张业荣 2010 电波科学学报 25 1175]

    [23]

    Namiki T 1999 IEEE Trans. Microwave. Theory Techn. 47 2003

  • [1] 何欣波, 魏兵. 基于悬挂变量的显式无条件稳定时域有限差分亚网格算法. 物理学报, 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813
    [2] 洪文鹏, 兰景瑞, 李浩然, 李博宇, 牛晓娟, 李艳. 基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为. 物理学报, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [3] 肖夏, 宋航, 王梁, 王宗杰, 路红. 早期乳腺肿瘤的超宽带微波稳健波束形成成像检测系统. 物理学报, 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [4] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [5] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [6] 丁亮, 刘培国, 何建国, Joe LoVetri. 一种金属腔体中微波断层成像的最优分层非均一背景. 物理学报, 2014, 63(18): 184102. doi: 10.7498/aps.63.184102
    [7] 丁亮, 刘培国, 何建国, Amer Zakaria, Joe LoVetri. 金属圆柱腔体中使用非均一背景增强微波断层成像. 物理学报, 2014, 63(4): 044102. doi: 10.7498/aps.63.044102
    [8] 乔海亮, 王玥, 陈再高, 张殿辉. 全矢量有限差分法分析任意截面波导模式. 物理学报, 2013, 62(7): 070204. doi: 10.7498/aps.62.070204
    [9] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [10] 鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥. 色散周期结构的辅助场时域有限差分法分析. 物理学报, 2012, 61(19): 194701. doi: 10.7498/aps.61.194701
    [11] 胡耿军, 李静, 龙潜, 陶陶, 张恭轩, 伍小平. 时域有限差分法数值仿真单光镊中微球受到的光阱力. 物理学报, 2011, 60(3): 030301. doi: 10.7498/aps.60.030301
    [12] 刘广东, 张业荣. 乳腺癌检测的三维微波热声成像技术. 物理学报, 2011, 60(7): 074303. doi: 10.7498/aps.60.074303
    [13] 魏兵, 董宇航, 王飞, 李存志. 基于移位算子时域有限差分的色散薄层节点修正算法. 物理学报, 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
    [14] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究. 物理学报, 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [15] 杨光杰, 孔凡敏, 李 康, 梅良模. 金属介质在时域有限差分中的几种处理方法. 物理学报, 2007, 56(7): 4252-4255. doi: 10.7498/aps.56.4252
    [16] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [17] 刘大刚, 周 俊, 刘盛纲. 用时域有限差分法实现金属支撑杆的计算机模拟. 物理学报, 2007, 56(12): 6924-6930. doi: 10.7498/aps.56.6924
    [18] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析. 物理学报, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
    [19] 闫玉波, 李清亮, 吴振森. 一种新时域交替隐式差分算法在散射问题中的应用. 物理学报, 2004, 53(12): 4173-4180. doi: 10.7498/aps.53.4173
    [20] 马坚伟, 杨慧珠, 朱亚平. 多尺度有限差分法模拟复杂介质波传问题. 物理学报, 2001, 50(8): 1415-1420. doi: 10.7498/aps.50.1415
计量
  • 文章访问数:  5144
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-15
  • 修回日期:  2016-05-18
  • 刊出日期:  2016-07-05

/

返回文章
返回