搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浓悬浮液中纳米SiO2团聚体的渗透率

夏辉 杨伟国

引用本文:
Citation:

浓悬浮液中纳米SiO2团聚体的渗透率

夏辉, 杨伟国

Permeability of nano SiO2 aggregates in concentrated suspension

Xia Hui, Yang Wei-Guo
PDF
导出引用
  • 本文基于悬浮液中渗透性颗粒的短时扩散动力学理论, 采用低相干光纤动态光散射方法, 测量了相同粒径的纳米SiO2团聚体在不同体积分数时的扩散系数, 利用扩散系数随渗透率的变化关系得到纳米SiO2团聚体的渗透率. 结果表明: 恒温条件下, 具有一定渗透率的团聚体颗粒扩散得比硬球颗粒快. 实验测量得到的团聚体渗透率与采用photoshop CS6 对团聚体SEM图像进行处理计算得到的渗透率符合较好.
    The low coherence optical fiber dynamic light scattering method is used to measure the effective diffusion coefficients of nano SiO2 aggregates suspensions with different volume fractions. The single scattering component can be detected preferentially from the multiply scattered light which is backscattered from the dense suspensions by the low coherence optical fiber dynamic light scattering. Consequently, the measured single-scattering spectrum enables the analysis of the effective diffusion coefficient by the single scattering theory. The numerical calculation results of short-time diffusion dynamics for permeable particles in dense suspension show that the effective diffusion coefficient is a function of particle size and hydrodynamics shielding depth ratio , and the volum fraction . According to the corrected Brinkman theory, the permeability of the nano SiO2 aggregates is obtained. For the volume fraction = 0.01, 0.02, 0.03, 0.04, 0.05 nano SiO2 aggregate suspensions with the average particle diameter 500 nm, the measured effective diffusion coefficients are 4.140.10, 4.060.06, 3.970.06, 3.900.08, 3.800.10 (10-13 m2/s) respectively. While according to the hard sphere model of impermeable particles, which corresponds to = , the calculated effective diffusion coefficients are 3.70, 3.61, 3.52, 3.42, 3.36 (10-13 m2/s) respectively. It can be seen that the measured values are much bigger than the theoretical values of impermeable particles: their difference comes from the influence of permeability of porous aggregates on particle diffusion. It is found that the measured values are consistent with that of = 12, in which the corrsponding permeability of the nano SiO2 aggregates is k = 4.34 10-16 m2. The pixel statistic method by Photoshop CS6 is used to deal with the SEM images of SiO2 aggregates, the calculated permeability of the nano SiO2 aggregates is k = 4.55 10-16 m2, compared with the experimental result, the standard error is 4.87%. The results show that under the condition of constant temperature, the particles of permeable aggregates spread faster than the hard sphere particles. For constant temperature, particle size and permeability, the effective coefficient decreases with the increase of the volume fraction. The measured permeability of SiO2 aggregates in concentrated suspension is consistent with that obtained from the pixel statistics by Photoshop CS6. As a result, the low coherent optical fiber dynamic light scattering can effectively measure the permeability of porous nano particles in concentrated suspension, showing high potential application in the field of chemical engineering and nano materials preparation.
      通信作者: 夏辉, xhui73@csu.edu.cn
      Corresponding author: Xia Hui, xhui73@csu.edu.cn
    [1]

    Gustavo C A, Bogdan C, Maria L E, Gerhard N, Eligiusz W 2010 J. Chem. Phys. 133 084906

    [2]

    Hijazi A, Atwi A, Khater A 2014 Inter. J. Comp. Theor. Eng. 6 401

    [3]

    Huang C L, Feng Y H, Zhang X X, Li W, Yang M, Li J, Wang G 2012 Acta Phys. Sin. 61 154402 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈 2012 物理学报 61 154402]

    [4]

    de la Mora M B, Bornacelli J, Nava R, Zanella R, Reyes-Esqueda J A 2014 J. Lumin. 146 247

    [5]

    Purnomo E H, van den Ende D, Vanapalli S A, Mugele F 2008 Phys. Rev. Lett. 101 238301

    [6]

    Dhont J K G 1996 An Introduction to Dynamics of Colloids (Amsterdam: Elsevier) pp327-329

    [7]

    Brene B J, Pecora R 1976 Dynamic Light Scattering (New York: John Wiley and sons) pp1-6

    [8]

    Xia H, Ishii K, Iwaii T, Li H J Yang B C 2008 Appl. Opt. 47 1257

    [9]

    Xia H, Miao C X, Cheng J W, Tao S H, Pang R Y, Wu X Y 2012 Appl. Opt. 51 3263

    [10]

    Xia H, Li H J, Yang B C, Ishii K, Iwai T 2008 Opt. Commun. 281 1331

    [11]

    Ishii K, Yoshida R, Iwai T 2005 Opt. Lett. 30 555

    [12]

    Zhong C, Chen Z Q, Yang W G, Xia H 2013 Acta Phys. Sin. 62 214207 (in Chinese) [钟诚, 陈智全, 杨伟国, 夏辉 2013 物理学报 62 214207]

    [13]

    Yang W G, Zhong C, Xia H 2014 Acta Phys. Sin. 63 214705 (in Chinese) [杨伟国, 钟诚, 夏辉 2014 物理学报 63 214705]

    [14]

    Brinkman H C 1949 Appl. Sci. Res. 1 27

    [15]

    Vanni M 2000 Chem. Eng. Sci. 55 685

  • [1]

    Gustavo C A, Bogdan C, Maria L E, Gerhard N, Eligiusz W 2010 J. Chem. Phys. 133 084906

    [2]

    Hijazi A, Atwi A, Khater A 2014 Inter. J. Comp. Theor. Eng. 6 401

    [3]

    Huang C L, Feng Y H, Zhang X X, Li W, Yang M, Li J, Wang G 2012 Acta Phys. Sin. 61 154402 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈 2012 物理学报 61 154402]

    [4]

    de la Mora M B, Bornacelli J, Nava R, Zanella R, Reyes-Esqueda J A 2014 J. Lumin. 146 247

    [5]

    Purnomo E H, van den Ende D, Vanapalli S A, Mugele F 2008 Phys. Rev. Lett. 101 238301

    [6]

    Dhont J K G 1996 An Introduction to Dynamics of Colloids (Amsterdam: Elsevier) pp327-329

    [7]

    Brene B J, Pecora R 1976 Dynamic Light Scattering (New York: John Wiley and sons) pp1-6

    [8]

    Xia H, Ishii K, Iwaii T, Li H J Yang B C 2008 Appl. Opt. 47 1257

    [9]

    Xia H, Miao C X, Cheng J W, Tao S H, Pang R Y, Wu X Y 2012 Appl. Opt. 51 3263

    [10]

    Xia H, Li H J, Yang B C, Ishii K, Iwai T 2008 Opt. Commun. 281 1331

    [11]

    Ishii K, Yoshida R, Iwai T 2005 Opt. Lett. 30 555

    [12]

    Zhong C, Chen Z Q, Yang W G, Xia H 2013 Acta Phys. Sin. 62 214207 (in Chinese) [钟诚, 陈智全, 杨伟国, 夏辉 2013 物理学报 62 214207]

    [13]

    Yang W G, Zhong C, Xia H 2014 Acta Phys. Sin. 63 214705 (in Chinese) [杨伟国, 钟诚, 夏辉 2014 物理学报 63 214705]

    [14]

    Brinkman H C 1949 Appl. Sci. Res. 1 27

    [15]

    Vanni M 2000 Chem. Eng. Sci. 55 685

  • [1] 祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤. 基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器. 物理学报, 2022, 71(17): 178101. doi: 10.7498/aps.71.20220652
    [2] 刘圣龙, 杨璐, 朱程君, 刘凯, 韩伟, 姚佳烽. 基于生物阻抗谱的细胞悬浮液浓度识别方法研究. 物理学报, 2022, 71(7): 078701. doi: 10.7498/aps.71.20211837
    [3] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [4] 游家学, 王锦程, 王理林, 王志军, 李俊杰, 林鑫. 悬浮液凝固研究进展. 物理学报, 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [5] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [6] 张颖, 郑宇, 何茂刚. 对利用动态光散射法测量颗粒粒径和液体黏度的改进. 物理学报, 2018, 67(16): 167801. doi: 10.7498/aps.67.20180271
    [7] 徐敏, 申晋, 黄钰, 徐亚南, 朱新军, 王雅静, 刘伟, 高明亮. 基于颗粒粒度信息分布特征的动态光散射加权反演. 物理学报, 2018, 67(13): 134201. doi: 10.7498/aps.67.20172377
    [8] 李乐, 李克非. 含随机裂纹网络孔隙材料渗透率的逾渗模型研究. 物理学报, 2015, 64(13): 136402. doi: 10.7498/aps.64.136402
    [9] 王德, 沈容, 刘灿灿, 韦世强, 陆坤权. 纳米TiO2颗粒对电流变悬浮液中硅油的挥发增强效应. 物理学报, 2015, 64(15): 154704. doi: 10.7498/aps.64.154704
    [10] 宋其晖, 石万元. 横向静磁场对电磁悬浮液滴稳定性的影响. 物理学报, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [11] 杨伟国, 钟诚, 夏辉. 浓悬浮液中渗透性颗粒的扩散特性研究. 物理学报, 2014, 63(21): 214705. doi: 10.7498/aps.63.214705
    [12] 钟诚, 陈智全, 杨伟国, 夏辉. 电解质对浓悬浮液中胶体颗粒扩散特性的影响. 物理学报, 2013, 62(21): 214207. doi: 10.7498/aps.62.214207
    [13] 林瑜, 杨光参, 王艳伟. DNA平衡离子凝聚的动态光散射分析. 物理学报, 2013, 62(11): 118702. doi: 10.7498/aps.62.118702
    [14] 王治, 胡恒山, 关威, 何晓. 孔隙地层震电测井波场分波分析. 物理学报, 2012, 61(5): 054302. doi: 10.7498/aps.61.054302
    [15] 鄢振麟, 解文军, 沈昌乐, 魏炳波. 声悬浮液滴的表面毛细波及八阶扇谐振荡. 物理学报, 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [16] 沈学举, 王龙, 韩玉东, 李征. 甲基红掺杂碳纳米管悬浮液的光限幅特性研究. 物理学报, 2010, 59(4): 2532-2536. doi: 10.7498/aps.59.2532
    [17] 黄喜, 张新亮, 董建绩, 黄德修. 半导体光放大器超快折射率变化动态特性的研究. 物理学报, 2009, 58(5): 3185-3192. doi: 10.7498/aps.58.3185
    [18] 刘志峰, 赖远庭, 赵 刚, 张有为, 刘正锋, 王晓宏. 随机多孔介质逾渗模型渗透率的临界标度性质. 物理学报, 2008, 57(4): 2011-2015. doi: 10.7498/aps.57.2011
    [19] 贾惟义, 熊季午. 悬浮颗粒散射引起的荧光增强现象. 物理学报, 1983, 32(11): 1471-1473. doi: 10.7498/aps.32.1471
    [20] 魏荣爵, 张淑仪. 超声波在悬浮液(水)中的吸收. 物理学报, 1965, 21(5): 1061-1074. doi: 10.7498/aps.21.1061
计量
  • 文章访问数:  4385
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-20
  • 修回日期:  2016-05-15
  • 刊出日期:  2016-07-05

/

返回文章
返回