搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浓悬浮液中渗透性颗粒的扩散特性研究

杨伟国 钟诚 夏辉

引用本文:
Citation:

浓悬浮液中渗透性颗粒的扩散特性研究

杨伟国, 钟诚, 夏辉

Study on diffusion of permeable particles in concentrated suspensions

Yang Wei-Guo, Zhong Cheng, Xia Hui
PDF
导出引用
  • 本文利用浓悬浮液中渗透性颗粒的短时扩散动力学数值模拟的结论,并结合Cohen-de Schepper近似和Percus-Yevick近似,研究了不同粒径渗透性颗粒的有效扩散系数随体积分数和渗透率的变化关系. 结果表明:对于浓悬浮液中一定粒径的渗透性颗粒,其扩散系数随渗透率的增加而增加,随体积分数的增加而减少;具有相同粒径与流体动力学屏蔽深度比值且波数较大的渗透性颗粒,其粒径对扩散的影响可以忽略.
    We have studied the effective diffusion coefficient of permeable particles with different radii at different permeability and volume fractions by using the numerical simulation results of short-time diffusion dynamics of permeable particles in concentrated suspensions and the combination of Cohen-de Schepper and Percus-Yevick approximations. As a result, the diffusivity of particles having the same radius will increase monotonically with increasing permeability to a certain volume fraction, and decrease linearly with increasing volume fraction to a certain permeability. While the effect of particle radius on the measured effective diffusion coefficients for the permeable particles with larger wave-numbers at the same ratio of particle radius to the hydrodynamic penetration depth may be neglected.
    • 基金项目: 国家自然科学基金(批准号:60708014)和中南大学中央高校基本科研业务费专项资金(批准号:2013zzts153)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60708014), and the Fundamental Research Funds for the Central Universities of Central South University, China (Grant No. 2013zzts153).
    [1]

    Brinkman H C 1949 Appl. Sci. Res. 1 27

    [2]
    [3]

    Batchelor G K 1976 J. Fluid Mech. 74 1

    [4]
    [5]

    Kao M H, Yodh A G, Pine D J 1993 Phys, Rev. Lett. 70 242

    [6]
    [7]

    Petekidis G, Gapinski J, Seymour P, van Duijneveldt J S, Vlassopoulos D, Fytas G 2004 Phys. Rev. E 69 042401

    [8]
    [9]

    Eckert T, Richtering W 2008 J. Chem. Phys. 129 124902

    [10]
    [11]

    Purnomo E H, van den Ende D, Vanapalli S A, Mugele F 2008 Phys. Rev. Lett. 101 238301

    [12]

    Prakash J, Raja Sekhar G P 2013 Math. Meth. Appl. Sci. 36 2174

    [13]
    [14]

    Cichocki B, Ekiel-Jeżewska M L, Wajnryb E 2013 Colloids Surf. A 418 22

    [15]
    [16]

    Deng W, Yu X, Sahimi M, Tsotsis TT 2014 J. Membr. Sci. 451 192

    [17]
    [18]
    [19]

    Yan G J, Chen G D, Wu Y L 2009 Chin. Phys. B 18 2925

    [20]

    Zeng P, Zhang P, Hu M, Ma S Y, Yan W J 2014 Chin. Phys. B 23 058103

    [21]
    [22]

    Kong D S, Wang J M, Pi O Y, Shao H B, Zhang J Q 2011 Acta Phys. Chim. Sin. 27 764 (in Chinese) [孔德帅, 王建明, 皮欧阳, 邵海波, 张鉴清 2011 物理化学学报 27 764]

    [23]
    [24]

    Lei J M, Lv L, Liu L, Xu X L 2011 Acta Phys. Sin. 60 017501 (in Chinese) [雷洁梅, 吕柳, 刘玲, 许小亮 2011 物理学报 60 017501]

    [25]
    [26]

    Dong C S, Gu Y, Zhong M L, Ma M X, Huang T, Liu W J 2012 Acta Phys. Sin. 61 094211 (in Chinese) [董长胜, 谷雨, 钟敏霖, 马明星, 黄婷, 刘文今 2012 物理学报 61 094211]

    [27]
    [28]
    [29]

    Lu C Y, Yuan B, Yang K 2013 Acta Phys. Sin. 62 178701 (in Chinese) [陆乃彦, 元冰, 杨恺 2013 物理学报 62 178701]

    [30]

    Chen S B, Cai A 1999 J. Colloid Interface Sci. 217 328

    [31]
    [32]

    Mo G, Sangani A S 1994 Phys. Fluids 6 1637

    [33]
    [34]

    Abade G C, Cichocki B, Ekiel-Jeżewska M L, Ngele G, Wajnryb E 2010 J. Chem. Phys. 132 014503

    [35]
    [36]

    Debye P, Bueche A M 1948 J. Chem. Phys. 16 573

    [37]
    [38]

    Neale G, Epstein N, Nader W 1973 Chem. Eng. Sci. 28 1865

    [39]
    [40]

    Ooms G, Mijnlieff P F, Beckers H L 1970 J. Chem. Phys 53 4123

    [41]
    [42]

    Yu Q, Kaloni P N 1988 J. Eng. Maths. 22 177

    [43]
    [44]

    Cichocki B, Ekiel-Jeżewska M L, Ngele G, Wajnryb E 2011 Phys. Fluids 23 083303

    [45]
    [46]

    Xia H, Ishii K, Iwaii T, Li H J, Yang B C 2008 Appl. Opt. 47 1257

    [47]
    [48]

    Ma X Y, Lu J Q, Brock R S, Jacobs K M, Yang P, Hu X H 2003 Phys. Med. Biol. 48 4165

    [49]
    [50]

    Cohen E G D, De Schepper I M 1995 Phys. Rev. Lett. 75 2252

    [51]
  • [1]

    Brinkman H C 1949 Appl. Sci. Res. 1 27

    [2]
    [3]

    Batchelor G K 1976 J. Fluid Mech. 74 1

    [4]
    [5]

    Kao M H, Yodh A G, Pine D J 1993 Phys, Rev. Lett. 70 242

    [6]
    [7]

    Petekidis G, Gapinski J, Seymour P, van Duijneveldt J S, Vlassopoulos D, Fytas G 2004 Phys. Rev. E 69 042401

    [8]
    [9]

    Eckert T, Richtering W 2008 J. Chem. Phys. 129 124902

    [10]
    [11]

    Purnomo E H, van den Ende D, Vanapalli S A, Mugele F 2008 Phys. Rev. Lett. 101 238301

    [12]

    Prakash J, Raja Sekhar G P 2013 Math. Meth. Appl. Sci. 36 2174

    [13]
    [14]

    Cichocki B, Ekiel-Jeżewska M L, Wajnryb E 2013 Colloids Surf. A 418 22

    [15]
    [16]

    Deng W, Yu X, Sahimi M, Tsotsis TT 2014 J. Membr. Sci. 451 192

    [17]
    [18]
    [19]

    Yan G J, Chen G D, Wu Y L 2009 Chin. Phys. B 18 2925

    [20]

    Zeng P, Zhang P, Hu M, Ma S Y, Yan W J 2014 Chin. Phys. B 23 058103

    [21]
    [22]

    Kong D S, Wang J M, Pi O Y, Shao H B, Zhang J Q 2011 Acta Phys. Chim. Sin. 27 764 (in Chinese) [孔德帅, 王建明, 皮欧阳, 邵海波, 张鉴清 2011 物理化学学报 27 764]

    [23]
    [24]

    Lei J M, Lv L, Liu L, Xu X L 2011 Acta Phys. Sin. 60 017501 (in Chinese) [雷洁梅, 吕柳, 刘玲, 许小亮 2011 物理学报 60 017501]

    [25]
    [26]

    Dong C S, Gu Y, Zhong M L, Ma M X, Huang T, Liu W J 2012 Acta Phys. Sin. 61 094211 (in Chinese) [董长胜, 谷雨, 钟敏霖, 马明星, 黄婷, 刘文今 2012 物理学报 61 094211]

    [27]
    [28]
    [29]

    Lu C Y, Yuan B, Yang K 2013 Acta Phys. Sin. 62 178701 (in Chinese) [陆乃彦, 元冰, 杨恺 2013 物理学报 62 178701]

    [30]

    Chen S B, Cai A 1999 J. Colloid Interface Sci. 217 328

    [31]
    [32]

    Mo G, Sangani A S 1994 Phys. Fluids 6 1637

    [33]
    [34]

    Abade G C, Cichocki B, Ekiel-Jeżewska M L, Ngele G, Wajnryb E 2010 J. Chem. Phys. 132 014503

    [35]
    [36]

    Debye P, Bueche A M 1948 J. Chem. Phys. 16 573

    [37]
    [38]

    Neale G, Epstein N, Nader W 1973 Chem. Eng. Sci. 28 1865

    [39]
    [40]

    Ooms G, Mijnlieff P F, Beckers H L 1970 J. Chem. Phys 53 4123

    [41]
    [42]

    Yu Q, Kaloni P N 1988 J. Eng. Maths. 22 177

    [43]
    [44]

    Cichocki B, Ekiel-Jeżewska M L, Ngele G, Wajnryb E 2011 Phys. Fluids 23 083303

    [45]
    [46]

    Xia H, Ishii K, Iwaii T, Li H J, Yang B C 2008 Appl. Opt. 47 1257

    [47]
    [48]

    Ma X Y, Lu J Q, Brock R S, Jacobs K M, Yang P, Hu X H 2003 Phys. Med. Biol. 48 4165

    [49]
    [50]

    Cohen E G D, De Schepper I M 1995 Phys. Rev. Lett. 75 2252

    [51]
  • [1] 王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏. 基于CRDS和WM-DAS的宽量程免标定H2S体积分数的测量. 物理学报, 2022, 71(18): 184205. doi: 10.7498/aps.71.20220742
    [2] 王飞, 黄益旺, 孙启航. 气泡体积分数对沙质沉积物低频声学特性的影响. 物理学报, 2017, 66(19): 194302. doi: 10.7498/aps.66.194302
    [3] 蒋跃辉, 艾亮, 贾明, 程昀, 杜双龙, 李书国. 基于动态参数响应模型的动力锂离子电池循环容量衰减研究. 物理学报, 2017, 66(11): 118202. doi: 10.7498/aps.66.118202
    [4] 何秋燕, 袁晓. Carlson与任意阶分数微积分算子的有理逼近. 物理学报, 2016, 65(16): 160202. doi: 10.7498/aps.65.160202
    [5] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [6] 夏懿, 库晓珂, 沈苏华. 布朗运动和湍流扩散作用下槽流中纤维悬浮流动特性的研究. 物理学报, 2016, 65(19): 194702. doi: 10.7498/aps.65.194702
    [7] 张威, 胡林, 张兴刚. 双分散颗粒体系在临界堵塞态的结构特征. 物理学报, 2016, 65(2): 024502. doi: 10.7498/aps.65.024502
    [8] 韩典荣, 朱兴凤, 戴亚飞, 程承平, 罗成林. 碳纳米管阵列水渗透性质的研究. 物理学报, 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [9] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究. 物理学报, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [10] 圣宗强, 舒良萍, 孟影, 胡继刚, 钱建发. 有效液滴模型对超铅区结团放射性的研究. 物理学报, 2014, 63(16): 162302. doi: 10.7498/aps.63.162302
    [11] 王栋, 唐长庆, 田宝国, 曲亮生, 张金春, 狄增如. 具有列维飞行与布朗运动特征的循环竞争博弈及物种稳定共存条件. 物理学报, 2014, 63(16): 168701. doi: 10.7498/aps.63.168701
    [12] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究. 物理学报, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [13] 王雷, 王楠, 冀林, 姚文静. 高生长速度条件下的层片棒状共晶转变机理研究. 物理学报, 2013, 62(21): 216801. doi: 10.7498/aps.62.216801
    [14] 刘宁波, 关键, 黄勇, 王国庆, 何友. 海杂波的分段分数布朗运动模型. 物理学报, 2012, 61(19): 190503. doi: 10.7498/aps.61.190503
    [15] 钱祖文. 颗粒介质中的粘滞系数. 物理学报, 2012, 61(13): 134301. doi: 10.7498/aps.61.134301
    [16] 孔维姝, 胡林, 张兴刚, 岳国联. 颗粒堆的体积分数与制备流量关系的实验研究. 物理学报, 2010, 59(1): 411-416. doi: 10.7498/aps.59.411
    [17] 卢宏, 覃莉, 包景东. 周期场中非各态历经布朗运动. 物理学报, 2009, 58(12): 8127-8133. doi: 10.7498/aps.58.8127
    [18] 张晓明, 彭建华, 张入元. 利用线性可逆变换增强延迟反馈方法控制混沌的有效性. 物理学报, 2005, 54(7): 3019-3026. doi: 10.7498/aps.54.3019
    [19] 郭立新, 吴振森. 二维分数布朗运动(FBM)随机粗糙面电磁散射的基尔霍夫近似. 物理学报, 2001, 50(1): 42-47. doi: 10.7498/aps.50.42
    [20] 费庆宇, 黄炳忠. 射频溅射无定形硅的总空位体积分数. 物理学报, 1985, 34(11): 1413-1421. doi: 10.7498/aps.34.1413
计量
  • 文章访问数:  5391
  • PDF下载量:  792
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-24
  • 修回日期:  2014-05-23
  • 刊出日期:  2014-11-05

/

返回文章
返回