搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有列维飞行与布朗运动特征的循环竞争博弈及物种稳定共存条件

王栋 唐长庆 田宝国 曲亮生 张金春 狄增如

引用本文:
Citation:

具有列维飞行与布朗运动特征的循环竞争博弈及物种稳定共存条件

王栋, 唐长庆, 田宝国, 曲亮生, 张金春, 狄增如

Cyclical game coupling with Levy flight and Brownian motion and stable coexistence conditions of species

Wang Dong, Tang Chang-Qing, Tian Bao-Guo, Qu Liang-Sheng, Zhang Jin-Chun, Di Zeng-Ru
PDF
导出引用
  • 循环竞争博弈常被用来研究物种多样性. 以前有关循环竞争博弈的研究工作所考虑的相互作用距离模式包括最近邻、取固定距离或一定距离以内的随机值,这与实际情况不相符. 考虑到实际生物系统中物种个体做列维飞行与布朗运动的情况广泛存在,综合考虑了最近邻相互作用模式和列维飞行(布朗运动)长程相互作用模式,对循环竞争博弈及保持物种多样性的条件进行了研究. 得到了最大飞行距离与选择概率的临界关系(包括Logistic式和指数式关系),进一步得到了幂指数与选择概率的临界关系,以及保持物种共存的条件.
    Cyclical game is often used to study the biodiversity in ecosystem. However, the interaction distance mode considered in previous studies of cyclical game is only the interaction between nearest neighbors, a fixed distance, or a random value of fixed distance among the individuals of species. This is not consistent with the actual situation. In this paper, considering the fact that Levy flight and Brownian motion widespreadly exist in ecosystem, and comprehensively considering the nearest-neighbor-interaction and long-range-interaction given by Levy flight and Brownian motion, the cyclical game and conditions of maintaining biodiversity are investigated. The critical relation of maximal step length of flight versus choosing probability is presented, including Logistic and exponent relations. Further the critical relation between power-law exponent and choosing probability is found. The condition of maintaining species coexistence is also found.
    • 基金项目: 国家自然科学基金(批准号:61174150,60974084)和教育部新世纪优秀人才支持计划(批准号:NCET-09-0228)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61174150, 60974084) and the Program for the New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-09-0228).
    [1]

    Sinervo B, Lively C M 1996 Nature 380 240

    [2]

    Kerr B, Riley M A, Feldman M W, Bohannan B J M 2002 Nature 418 171

    [3]

    Kirkup B C, Riley M A 2004 Nature 428 412

    [4]

    Jackson J B C, Buss L 1975 Proc. Natl. Acad. Sci. USA 72 5160

    [5]

    Paquin C E, Adams J 1983 Nature 306 368

    [6]

    Gilg O, Hanski I, Sittler B 2003 Science 302 866

    [7]

    Reichenbach T, Mobilia M, Frey E 2007 Nature 448 1046

    [8]

    Reichenbach T, Mobilia M, Frey E 2007 Phys. Rev. Lett. 99 238105

    [9]

    Reichenbach T, Mobilia M, Frey E 2008 J. Theor. Biol. 254 368

    [10]

    Reichenbach T, Frey E 2008 Phys. Rev. Lett. 101 058102

    [11]

    Wang W M, Wang W J, Lin Y Z, Tan Y J 2011 Chin. Phys. B 20 034702

    [12]

    Quan J, Wang X J 2011 Chin. Phys. B 20 030203

    [13]

    Ying C Y, Hua D Y, Wang L Y 2007 J. Phys. A: Math. Theor. 40 4477

    [14]

    Sun R S, Hua D Y 2009 Chin. Phys. Lett. 26 086403

    [15]

    Hua D Y, Dai L C, Lin C 2013 Europhys. Lett. 101 38004

    [16]

    Zhang G Y, Chen Y, Qi W K, Qing S M 2009 Phys. Rev. E 79 062901

    [17]

    Szabo G, Fath G 2007 Phys. Rep. 446 97

    [18]

    Shi H J, Wang W X, Yang R, Lai Y C 2010 Phys. Rev. E 81 030901R

    [19]

    Ni X, Wang W X, Lai Y C, Grebogi C 2010 Phys. Rev. E 82 066211

    [20]

    Wang W X, Ni X, Lai Y C, Grebogi C 2011 Phys. Rev. E 83 11917

    [21]

    Nossal R 1983 J. Stat. Phys. 30 391

    [22]

    Viswanathan G M, Afanasyev V, Buldyrev S V, Murphy E J, Prince P A, Stanley H E 1996 Nature 381 413

    [23]

    Levandowsky M, White B S, Schuster F L 1997 Acta Protozool. 36 237

    [24]

    Ramos F G, Mateos J L, Miramontes O, Cocho G, Larralde H, Ayala O B 2004 Behav. Ecol. Sociobiol. 55 223

    [25]

    Dieterich P, Klages R, Preuss R, Schwab A 2008 Proc. Natl. Acad. Sci. USA 105 459

    [26]

    Humphries N E, Queiroz N, Dyer J R M, Pade N G, Musyl M K, Schaefer K M, Fuller D W, Brunnschweiler J M, Doyle T K, Houghton J D R, Hays G C, Jones C S, Noble L R, Wearmouth V J, Southall E J, Sims D W 2010 Nature 465 1066

    [27]

    Viswanathan G M, Raposo E P, da Luz M G E 2008 Phys. Life Rev. 5 133

    [28]

    Bartumeus F, Peters F, Pueyo S, Marrase C, Catalan J 2003 Proc. Natl. Acad. Sci. USA 100 12771

    [29]

    Bartumeus F 2007 Fractals 15 151

    [30]

    Sims D W, Southall E J, Humphries N E, Hays G C, Bradshaw C J A, Pitchford J W, James A, Ahmed M Z, Brierley A S, Hindell M A, Morritt D, Musyl M K, Righton D, Shepard E L C, Wearmouth V J, Wilson R P, Witt M J, Metcalfe J D 2008 Nature 451 1098

    [31]

    Sims D W, Righton D, Pitchford J W 2007 J. Anim. Ecol. 76 222

    [32]

    Travis J 2007 Science 318 742

    [33]

    Buchanan M 2008 Nature 453 714

    [34]

    Wang D, Zhuang Q, Fan Y, Di Z R 2013 Chin. Phys. B 22 128702

    [35]

    Gillespie D T 1976 J. Comput. Phys. 22 403

    [36]

    Gillespie D T 1977 J. Phys. Chem. 81 2340

    [37]

    Hastings A, Petrovskii S, Morozov A 2011 Biol. Lett. 7 163

    [38]

    Metzler R, Klafter J 2000 Phys. Rep. 339 1

  • [1]

    Sinervo B, Lively C M 1996 Nature 380 240

    [2]

    Kerr B, Riley M A, Feldman M W, Bohannan B J M 2002 Nature 418 171

    [3]

    Kirkup B C, Riley M A 2004 Nature 428 412

    [4]

    Jackson J B C, Buss L 1975 Proc. Natl. Acad. Sci. USA 72 5160

    [5]

    Paquin C E, Adams J 1983 Nature 306 368

    [6]

    Gilg O, Hanski I, Sittler B 2003 Science 302 866

    [7]

    Reichenbach T, Mobilia M, Frey E 2007 Nature 448 1046

    [8]

    Reichenbach T, Mobilia M, Frey E 2007 Phys. Rev. Lett. 99 238105

    [9]

    Reichenbach T, Mobilia M, Frey E 2008 J. Theor. Biol. 254 368

    [10]

    Reichenbach T, Frey E 2008 Phys. Rev. Lett. 101 058102

    [11]

    Wang W M, Wang W J, Lin Y Z, Tan Y J 2011 Chin. Phys. B 20 034702

    [12]

    Quan J, Wang X J 2011 Chin. Phys. B 20 030203

    [13]

    Ying C Y, Hua D Y, Wang L Y 2007 J. Phys. A: Math. Theor. 40 4477

    [14]

    Sun R S, Hua D Y 2009 Chin. Phys. Lett. 26 086403

    [15]

    Hua D Y, Dai L C, Lin C 2013 Europhys. Lett. 101 38004

    [16]

    Zhang G Y, Chen Y, Qi W K, Qing S M 2009 Phys. Rev. E 79 062901

    [17]

    Szabo G, Fath G 2007 Phys. Rep. 446 97

    [18]

    Shi H J, Wang W X, Yang R, Lai Y C 2010 Phys. Rev. E 81 030901R

    [19]

    Ni X, Wang W X, Lai Y C, Grebogi C 2010 Phys. Rev. E 82 066211

    [20]

    Wang W X, Ni X, Lai Y C, Grebogi C 2011 Phys. Rev. E 83 11917

    [21]

    Nossal R 1983 J. Stat. Phys. 30 391

    [22]

    Viswanathan G M, Afanasyev V, Buldyrev S V, Murphy E J, Prince P A, Stanley H E 1996 Nature 381 413

    [23]

    Levandowsky M, White B S, Schuster F L 1997 Acta Protozool. 36 237

    [24]

    Ramos F G, Mateos J L, Miramontes O, Cocho G, Larralde H, Ayala O B 2004 Behav. Ecol. Sociobiol. 55 223

    [25]

    Dieterich P, Klages R, Preuss R, Schwab A 2008 Proc. Natl. Acad. Sci. USA 105 459

    [26]

    Humphries N E, Queiroz N, Dyer J R M, Pade N G, Musyl M K, Schaefer K M, Fuller D W, Brunnschweiler J M, Doyle T K, Houghton J D R, Hays G C, Jones C S, Noble L R, Wearmouth V J, Southall E J, Sims D W 2010 Nature 465 1066

    [27]

    Viswanathan G M, Raposo E P, da Luz M G E 2008 Phys. Life Rev. 5 133

    [28]

    Bartumeus F, Peters F, Pueyo S, Marrase C, Catalan J 2003 Proc. Natl. Acad. Sci. USA 100 12771

    [29]

    Bartumeus F 2007 Fractals 15 151

    [30]

    Sims D W, Southall E J, Humphries N E, Hays G C, Bradshaw C J A, Pitchford J W, James A, Ahmed M Z, Brierley A S, Hindell M A, Morritt D, Musyl M K, Righton D, Shepard E L C, Wearmouth V J, Wilson R P, Witt M J, Metcalfe J D 2008 Nature 451 1098

    [31]

    Sims D W, Righton D, Pitchford J W 2007 J. Anim. Ecol. 76 222

    [32]

    Travis J 2007 Science 318 742

    [33]

    Buchanan M 2008 Nature 453 714

    [34]

    Wang D, Zhuang Q, Fan Y, Di Z R 2013 Chin. Phys. B 22 128702

    [35]

    Gillespie D T 1976 J. Comput. Phys. 22 403

    [36]

    Gillespie D T 1977 J. Phys. Chem. 81 2340

    [37]

    Hastings A, Petrovskii S, Morozov A 2011 Biol. Lett. 7 163

    [38]

    Metzler R, Klafter J 2000 Phys. Rep. 339 1

  • [1] 姚霄, 刘伟强, 谭建国. 高速飞行器磁控阻力特性. 物理学报, 2018, 67(17): 174702. doi: 10.7498/aps.67.20180478
    [2] 夏懿, 库晓珂, 沈苏华. 布朗运动和湍流扩散作用下槽流中纤维悬浮流动特性的研究. 物理学报, 2016, 65(19): 194702. doi: 10.7498/aps.65.194702
    [3] 王飞, 谢天婷, 邓翠, 罗懋康. 系统非对称性及记忆性对布朗马达输运行为的影响. 物理学报, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [4] 王自强, 钟敏成, 周金华, 李银妹. 基于自回归模型的光阱中粒子运动模拟. 物理学报, 2013, 62(18): 188701. doi: 10.7498/aps.62.188701
    [5] 周丹丹, 任煜轩, 刘伟伟, 龚雷, 李银妹. 时间飞行法测量光阱刚度的实验研究 . 物理学报, 2012, 61(22): 228702. doi: 10.7498/aps.61.228702
    [6] 程海涛, 何济洲, 肖宇玲. 周期性双势垒锯齿势中温差驱动的布朗热机. 物理学报, 2012, 61(1): 010502. doi: 10.7498/aps.61.010502
    [7] 刘宁波, 关键, 黄勇, 王国庆, 何友. 海杂波的分段分数布朗运动模型 . 物理学报, 2012, 61(19): 190503. doi: 10.7498/aps.61.190503
    [8] 冉诗勇. 谐振势阱中的布朗运动——磁镊实验与模拟. 物理学报, 2012, 61(17): 170503. doi: 10.7498/aps.61.170503
    [9] 卢宏, 覃莉, 包景东. 周期场中非各态历经布朗运动. 物理学报, 2009, 58(12): 8127-8133. doi: 10.7498/aps.58.8127
    [10] 郑 彬, 施春华. 平流层中部垂直运动年循环异常的模拟研究. 物理学报, 2007, 56(7): 4277-4280. doi: 10.7498/aps.56.4277
    [11] 何济洲, 王 磊, 李俊彬. 量子简并性对气体斯特林制冷循环性能的影响. 物理学报, 2005, 54(1): 24-29. doi: 10.7498/aps.54.24
    [12] 付文玉, 侯锡苗, 贺丽霞, 郑志刚. 少体硬球系统的动力学与统计研究. 物理学报, 2005, 54(6): 2552-2556. doi: 10.7498/aps.54.2552
    [13] 邓茂林, 洪明潮, 朱位秋, 汪元美. 活性布朗粒子运动的稳态解. 物理学报, 2004, 53(7): 2029-2034. doi: 10.7498/aps.53.2029
    [14] 降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂. 低频响及低采样频率下用布朗运动分析法测量光阱刚度. 物理学报, 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
    [15] 康艳梅, 徐健学, 谢 勇. 弱噪声极限下二维布朗运动的随机共振现象. 物理学报, 2003, 52(4): 802-808. doi: 10.7498/aps.52.802
    [16] 郭立新, 吴振森. 二维分数布朗运动(FBM)随机粗糙面电磁散射的基尔霍夫近似. 物理学报, 2001, 50(1): 42-47. doi: 10.7498/aps.50.42
    [17] 李 焱, 陈建国, 李大义, 陆 洋, 周小红. 外腔半导体激光器调谐输出曲线双稳环的多样性及多解与基本参量的关系. 物理学报, 1999, 48(12): 2252-2258. doi: 10.7498/aps.48.2252
    [18] 展永, 包景东, 卓益忠, 吴锡真. 布朗马达的定向输运模型. 物理学报, 1997, 46(10): 1880-1887. doi: 10.7498/aps.46.1880
    [19] 吴烽, 汪秉宏, 杨月桂, 姚斌. 电流变液中悬浮粒子的布朗运动与其聚集之间关系. 物理学报, 1996, 45(3): 403-408. doi: 10.7498/aps.45.403
    [20] 夏蒙棼, 仇韵清. 单波驱动飞行粒子随机扩散. 物理学报, 1986, 35(1): 7-16. doi: 10.7498/aps.35.7
计量
  • 文章访问数:  2537
  • PDF下载量:  772
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-13
  • 修回日期:  2014-04-16
  • 刊出日期:  2014-08-05

具有列维飞行与布朗运动特征的循环竞争博弈及物种稳定共存条件

  • 1. 海军航空工程学院基础部, 烟台 264001;
  • 2. 北京师范大学系统科学学院, 北京 100875;
  • 3. 海军航空工程学院研究生管理大队, 烟台 264001
    基金项目: 国家自然科学基金(批准号:61174150,60974084)和教育部新世纪优秀人才支持计划(批准号:NCET-09-0228)资助的课题.

摘要: 循环竞争博弈常被用来研究物种多样性. 以前有关循环竞争博弈的研究工作所考虑的相互作用距离模式包括最近邻、取固定距离或一定距离以内的随机值,这与实际情况不相符. 考虑到实际生物系统中物种个体做列维飞行与布朗运动的情况广泛存在,综合考虑了最近邻相互作用模式和列维飞行(布朗运动)长程相互作用模式,对循环竞争博弈及保持物种多样性的条件进行了研究. 得到了最大飞行距离与选择概率的临界关系(包括Logistic式和指数式关系),进一步得到了幂指数与选择概率的临界关系,以及保持物种共存的条件.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回