搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海杂波的分段分数布朗运动模型

刘宁波 关键 黄勇 王国庆 何友

引用本文:
Citation:

海杂波的分段分数布朗运动模型

刘宁波, 关键, 黄勇, 王国庆, 何友

Piecewise fractional Brownian motion for modeling sea clutter

Liu Ning-Bo, Guan Jian, Huang Yong, Wang Guo-Qing, He You
PDF
导出引用
  • 主要研究了分段分数布朗运动(PFBM)模型在雷达海杂波分形建模中的应用.由于自然界和人造系统中研究对象不具有数学上完美的分形特性, 从而研究对象的分形特性无法在整个尺度区间上成立, 传统上, 海杂波的单一分形模型仅利用无标度区间内海杂波的自相似信息进行参数估计, 并没有考虑海杂波在无标度区间以外的尺度下所包含的信息.分段分数布朗运动从频域角度对海杂波频谱进行分段描述, 对应到时域即从粗略尺度和精细尺度两方面描述海杂波时间序列.结合海杂波产生的物理背景, 该模型可以为海杂波时间序列在粗略尺度和精细尺度下表现出的不同粗糙度提供机理性解释.在此基础上, 还研究了具有不同多普勒频率的运动目标对海杂波的影响, 结果表明运动目标对粗略尺度和精细尺度下海杂波的影响程度是不同的.
    In this paper we mainly study the application of piecewise fractional Brownian motion (PFBM) to modeling radar sea clutter. Because the research objects in nature and man-made systems are usually not perfectly fractal in mathematics, the fractal properties of these researched objects cannot hold in the whole scale interval. Traditionally, the mono-fractal model of sea clutter only makes use of the self-similarity of sea clutter within the scale-invariant interval for parameter estimation but ignores the information contained in the scales outside the scale-invariant interval. The PFBM describes the sea clutter piecewisely in frequency domain, which corresponds to describing the sea clutter in time domain respectively on the large scale and on the fine scale. Combining the physical background, the PFBM model can explain the mechanism of the different roughnesses of a sea clutter time sequence respectively on the large scale and on the fine scale. Subsequently, in the paper, we study the effects of moving targets with different Doppler frequencies on sea clutter. The results show that moving targets can cause different effects on sea clutter respectively on the large scale and on the fine scale.
    • 基金项目: 国家自然科学基金(批准号: 61179017, 60802088)、"泰山学者"建设工程专项经费和航空科学基金(批准号: 20095184004)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61179017, 60802088), and the Mountain Tai Scholars of China and Areo Science Foundation of China (Grant No. 20095184004).
    [1]

    Savaidis S, Frangos Y 1995 Opt. Lett. 20 2357

    [2]

    Lo T, Leung H, Haykin S 1993 IEE Proc. F 140 243

    [3]

    Chang Y C, Chang S 2002 IEEE Trans. Signal Proc. 50 554

    [4]

    Salmasi M, Modarres-Hashemi M 2009 Chaos, Solitons & Fractals 40 2133

    [5]

    He T, Zhou Z O 2007 Acta Phys. Sin. 56 693 (in Chinese) [贺涛, 周正欧 2007 物理学报 56 693]

    [6]

    Jiang B, Wang H Q, Li X, Guo G R 2006 Acta Phys. Sin. 55 3985 (in Chinese) [姜斌, 王宏强, 黎湘, 郭桂蓉 2006 物理学报 55 3985]

    [7]

    Xu X K 2010 IEEE Trans. Antenna Propag. 581425

    [8]

    Guan J, Liu N B, Huang Y 2011 Fractal Theory and Its Application in Radar Target Detection (Beijing: Electronic Industry Press) p117 (in Chinese) [关键, 刘宁波, 黄勇 2011 雷达目标检测的分形理论及应用(北京:电子工业出版社) 第117页].

    [9]

    Perrin E, Harba R, Iribarren I, Jennane R 2005 IEEE Trans. Signal Proc. 53 1211

    [10]

    Falconer K 2007 Fractal Geometry: Mathematical Foundations and Applications (2nd Ed.) (Beijing: Posts & Telecom Press) p231 (in Chinese) [Falconer K 2007 分形几何:数学基础及其应用(第2版) (北京: 人民邮电出版社) 第231页]

    [11]

    Reed I S, Lee P C, Truong T K 1995 IEEE Trans. Inf. Theory 41 1439

    [12]

    Deriche M, Tewfik A H 1993 IEEE Trans. Signal Proc. 41 1239

    [13]

    Kaplan L M, Jay Kuo C C 1994 IEEE Trans. Signal Proc. 42 3526

    [14]

    Kaplan L M, Kuo C C 1995 IEEE Trans. Pattern Anal. Mach. Intell. 17 1043

    [15]

    Drosopoulos A 1994 Defence Research Establishment Ottawa, 1994 Tech. Note No. 94-14

    [16]

    Hu J, Tung W W, Gao J B 2006 IEEE Trans. Antenna Propag. 54 136

  • [1]

    Savaidis S, Frangos Y 1995 Opt. Lett. 20 2357

    [2]

    Lo T, Leung H, Haykin S 1993 IEE Proc. F 140 243

    [3]

    Chang Y C, Chang S 2002 IEEE Trans. Signal Proc. 50 554

    [4]

    Salmasi M, Modarres-Hashemi M 2009 Chaos, Solitons & Fractals 40 2133

    [5]

    He T, Zhou Z O 2007 Acta Phys. Sin. 56 693 (in Chinese) [贺涛, 周正欧 2007 物理学报 56 693]

    [6]

    Jiang B, Wang H Q, Li X, Guo G R 2006 Acta Phys. Sin. 55 3985 (in Chinese) [姜斌, 王宏强, 黎湘, 郭桂蓉 2006 物理学报 55 3985]

    [7]

    Xu X K 2010 IEEE Trans. Antenna Propag. 581425

    [8]

    Guan J, Liu N B, Huang Y 2011 Fractal Theory and Its Application in Radar Target Detection (Beijing: Electronic Industry Press) p117 (in Chinese) [关键, 刘宁波, 黄勇 2011 雷达目标检测的分形理论及应用(北京:电子工业出版社) 第117页].

    [9]

    Perrin E, Harba R, Iribarren I, Jennane R 2005 IEEE Trans. Signal Proc. 53 1211

    [10]

    Falconer K 2007 Fractal Geometry: Mathematical Foundations and Applications (2nd Ed.) (Beijing: Posts & Telecom Press) p231 (in Chinese) [Falconer K 2007 分形几何:数学基础及其应用(第2版) (北京: 人民邮电出版社) 第231页]

    [11]

    Reed I S, Lee P C, Truong T K 1995 IEEE Trans. Inf. Theory 41 1439

    [12]

    Deriche M, Tewfik A H 1993 IEEE Trans. Signal Proc. 41 1239

    [13]

    Kaplan L M, Jay Kuo C C 1994 IEEE Trans. Signal Proc. 42 3526

    [14]

    Kaplan L M, Kuo C C 1995 IEEE Trans. Pattern Anal. Mach. Intell. 17 1043

    [15]

    Drosopoulos A 1994 Defence Research Establishment Ottawa, 1994 Tech. Note No. 94-14

    [16]

    Hu J, Tung W W, Gao J B 2006 IEEE Trans. Antenna Propag. 54 136

  • [1] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电. 物理学报, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [2] 行鸿彦, 张强, 徐伟. 海杂波FRFT域的分形特征分析及小目标检测方法. 物理学报, 2015, 64(11): 110502. doi: 10.7498/aps.64.110502
    [3] 熊刚, 张淑宁, 赵慧昌. 基于小波leaders的海杂波时变奇异谱分布分析. 物理学报, 2014, 63(15): 150503. doi: 10.7498/aps.63.150503
    [4] 行鸿彦, 朱清清, 徐伟. 一种混沌海杂波背景下的微弱信号检测方法. 物理学报, 2014, 63(10): 100505. doi: 10.7498/aps.63.100505
    [5] 吴国成, 石祥超. 非光滑热曲线的分数阶次可微性研究 . 物理学报, 2012, 61(19): 190502. doi: 10.7498/aps.61.190502
    [6] 行鸿彦, 祁峥东, 徐伟. 基于选择性支持向量机集成的海杂波背景中的微弱信号检测. 物理学报, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [7] 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法. 物理学报, 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [8] 杨娟, 卞保民, 闫振纲, 王春勇, 李振华. 典型随机信号特征参数统计分布的分形特性. 物理学报, 2011, 60(10): 100506. doi: 10.7498/aps.60.100506
    [9] 杨娟, 卞保民, 彭刚, 李振华. 随机信号双参数脉冲模型的分形特征. 物理学报, 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [10] 贺静波, 刘忠, 胡生亮. 基于海杂波散射特性的微弱信号检测方法. 物理学报, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [11] 刘耀民, 刘中良, 黄玲艳. 分形理论结合相变动力学的冷表面结霜过程模拟. 物理学报, 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [12] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制. 物理学报, 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708
    [13] 姜泽辉, 郭波, 张峰, 王福力. 摩擦力对非弹性蹦球倍周期运动的影响. 物理学报, 2010, 59(12): 8444-8450. doi: 10.7498/aps.59.8444
    [14] 行鸿彦, 金天力. 基于对偶约束最小二乘支持向量机的混沌海杂波背景中的微弱信号检测. 物理学报, 2010, 59(1): 140-146. doi: 10.7498/aps.59.140
    [15] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [16] 姜泽辉, 赵海发, 郑瑞华. 完全非弹性蹦球倍周期运动的分形特征. 物理学报, 2009, 58(11): 7579-7583. doi: 10.7498/aps.58.7579
    [17] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究. 物理学报, 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
    [18] 李 彤, 商朋见. 多重分形在掌纹识别中的研究. 物理学报, 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [19] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究. 物理学报, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [20] 郭立新, 吴振森. 二维分数布朗运动(FBM)随机粗糙面电磁散射的基尔霍夫近似. 物理学报, 2001, 50(1): 42-47. doi: 10.7498/aps.50.42
计量
  • 文章访问数:  4703
  • PDF下载量:  692
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-28
  • 修回日期:  2012-04-05

海杂波的分段分数布朗运动模型

  • 1. 海军航空工程学院电子信息工程系, 烟台 264001
    基金项目: 国家自然科学基金(批准号: 61179017, 60802088)、"泰山学者"建设工程专项经费和航空科学基金(批准号: 20095184004)资助的课题.

摘要: 主要研究了分段分数布朗运动(PFBM)模型在雷达海杂波分形建模中的应用.由于自然界和人造系统中研究对象不具有数学上完美的分形特性, 从而研究对象的分形特性无法在整个尺度区间上成立, 传统上, 海杂波的单一分形模型仅利用无标度区间内海杂波的自相似信息进行参数估计, 并没有考虑海杂波在无标度区间以外的尺度下所包含的信息.分段分数布朗运动从频域角度对海杂波频谱进行分段描述, 对应到时域即从粗略尺度和精细尺度两方面描述海杂波时间序列.结合海杂波产生的物理背景, 该模型可以为海杂波时间序列在粗略尺度和精细尺度下表现出的不同粗糙度提供机理性解释.在此基础上, 还研究了具有不同多普勒频率的运动目标对海杂波的影响, 结果表明运动目标对粗略尺度和精细尺度下海杂波的影响程度是不同的.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回