搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carlson与任意阶分数微积分算子的有理逼近

何秋燕 袁晓

引用本文:
Citation:

Carlson与任意阶分数微积分算子的有理逼近

何秋燕, 袁晓

Carlson iterating and rational approximation of arbitrary order fractional calculus operator

He Qiu-Yan, Yuan Xiao
PDF
导出引用
  • 将针对1/n阶微积分算子有理逼近的经典Carlson正则牛顿迭代法拓展到任意阶分数微积分算子的有理逼近. 为了构造一个有理函数序列收敛于无理的分数微积分算子函数,将分数微积分算子有理逼近问题转换为二项方程的算术根代数迭代求解. 并引入预矫正函数,使用牛顿迭代公式求解算术根,获得任意阶分数微积分算子的有理逼近阻抗函数. 对n从2到5变化的九种不同运算阶,针对特定的运算阶,选择八种不同的初始阻抗,通过研究阻抗函数的零极点分布和频域特征,分析阻抗函数是否同时满足计算有理性、正实性原理和运算有效性. 证明对任意的运算阶,在选择合适的初始阻抗的情况下,阻抗函数具有物理可实现性,在一定频率范围内具有分数微积分算子的运算特性. Carlson正则牛顿迭代法的推广为进一步的理论研究和构造任意分数阶电路与系统提供一种新思路.
    With the development of factional calculus theory and applications in different fields in recent years, the rational approximation problem of fractional calculus operator has become a hot spot of research. In the early 1950s and 1960s, Carlson and Halijak proposed regular Newton iterating method to implement rational approximation of the one-nth calculus operator. Carlson regular Newton iterating method has a great sense of innovation for the rational approximation of fractional calculus operator, however, it has been used only for certain calculus operators. The aim of this paper is to achieve rational approximation of arbitrary order fractional calculus operator. The realization is achieved via the generalization of Carlson regular Newton iterating method. To construct a rational function sequence which is convergent to irrational fractional calculus operator function, the rational approximation problem of fractional calculus operator is transformed into the algebra iterating solution of arithmetic root of binomial equation. To speed up the convergence, the pre-distortion function is introduced. And the Newton iterating formula is used to solve arithmetic root. Then the approximated rational impedance function of arbitrary order fractional calculus operator is obtained. For nine different operational orders with n changing from 2 to 5, the impedance functions are calculated respectively through choosing eight different initial impedances for a certain operational order. Considering fractional order operation characteristics of the impedance function and the physical realization of network synthesis, the impedance function should satisfy these basic properties simultaneously: computational rationality, positive reality principle and operational validity. In other words, there exists only rational computation of operational variable s in the expression of impedance function. All the zeros and poles of impedance function are located on the negative real axis of s complex plane or the left-half plane of s complex plane in conjugate pairs. The frequency-domain characteristics of impedance function approximate to those of ideal fractional calculus operator over a certain frequency range. Given suitable initial impedance and for an arbitrary operational order, it is proved that the impedance function could meet all properties above by studying the zero-pole distribution and analyzing frequency-domain characteristics of the impedance function. Therefore, the impedance function could take on operational performance of the ideal fractional calculus operator and achieve the physical realization. It is of great effectiveness in the generalization of this kind of method in both theory and experiment. The results educed in this paper are the basis for further theoretic research and engineering application in constructing the arbitrary order fractional circuits and systems.
      通信作者: 袁晓, heqiuyan789@163.com
    • 基金项目: 成都市科技计划(批准号:12DXYB255JH-002)资助的课题.
      Corresponding author: Yuan Xiao, heqiuyan789@163.com
    • Funds: Project supported by the Science and Technology Plan of Chengdu, China (Grant No. 12DXYB255JH-002).
    [1]

    Steiglitz K 1964 IEEE Trans. Circuit Theory 11 160

    [2]

    Halijak C A 1964 IEEE Trans. Circuit Theory 11 494

    [3]

    Ren Y, Yuan X 2008 J. Sichuan Univ. (Nat. Sci. Ed.) 45 1100 (in Chinese) [任毅, 袁晓 2008 四川大学学报(自然科学版) 45 1100]

    [4]

    Dutta R S C 1967 IEEE Trans. Circuit Theory 14 264

    [5]

    Krishna B T, Reddy K V V S 2008 Act. Passive Electron.Compon. 2008 369421

    [6]

    Krishna B T 2011 Signal Process. 91 386

    [7]

    Liu Y, Pu Y F, Shen X D, Zhou J L 2012 J. Sichuan Univ. (Eng. Sci. Ed.) 44 153 (in Chinese) [刘 彦, 蒲亦非, 沈晓东, 周激流 2012 四川大学学报(工程科学版) 44 153]

    [8]

    Sun H H, Abdelwahab A A, Onaral B 1984 IEEE Trans. Autom Control 29 441

    [9]

    Zou D, Yuan X 2013 J. Sichuan Univ. (Nat. Sci. Ed.) 50 293 (in Chinese) [邹道, 袁晓 2013 四川大学学报(自然科学版) 50 293]

    [10]

    Carlson G E 1960 M. S. Thesis (Manhattan: Kansas State University)

    [11]

    Carlson G E, Halijak C A 1962 IRE Trans. Circuit Theory 9 302

    [12]

    Carlson G E, Halijak C A 1964 IEEE Trans. Circuit Theory 11 210

    [13]

    Zu Y X, Lu Y Q 2007 Network Analysis and Synthesis (Beijing: China Machine Press) pp111-120 (in Chinese) [俎云霄, 吕玉琴 2007 网络分析与综合(北京:机械工业出版社) 第111-120页]

    [14]

    Liao K, Yuan X, Pu Y F, Zhou J L 2006 J. Sichuan Univ. (Eng. Sci. Ed.) 43 104 (in Chinese) [廖科, 袁晓, 蒲亦非, 周激流 2006 四川大学学报(自然科学版) 43 104]

    [15]

    Pu Y F, Yuan X, Liao K, Zhou J L, Zhang N, Zeng Y 2005 Proceedings of IEEE International Conference on Mechatronics and Automation Niagara Falls, Canada, July 29-August 1, 2005 p1375

    [16]

    Liao K, Yuan X, Pu Y F, Zhou J L 2005 J. Sichuan Univ. (Eng. Sci. Ed.) 37 150 (in Chinese) [廖科, 袁晓, 蒲亦非, 周激流 2005四川大学学报(工程科学版) 37 150]

    [17]

    Tsirimokou G Psychalinos C, Elwakil A S 2015 Analog. Integr. Circ. Sig. Process. 85 413

    [18]

    Pu Y F, Yuan X, Liao K, Zhou J L 2006 J. Sichuan Univ. (Eng. Sci. Ed.) 38 128 (in Chinese) [蒲亦非, 袁晓, 廖科, 周激流 2006 四川大学学报(工程科学版) 38 128]

    [19]

    Ortigueira M D Batista A G 2008 Phys. Lett. A 372 958

    [20]

    Ortigueira M D 2008 IEEE Circuits Syst. Mag. 38 19

    [21]

    Magin R, Ortigueira M D, Podlubny I, Trujillo J 2011 Signal Process. 91 350

    [22]

    Sheng H, Chen Y Q, Qiu T S 2012 Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications (Springer London, Dordrecht, Heidelberg, New York: Signals and Communication Technology) pp31-39

    [23]

    Elwakil A S 2010 IEEE Circuits Syst. Mag. 4 40

    [24]

    Podlubny I 1999 Fractional Differential Equations (San Diego(USA): Academic Press) pp252-259

    [25]

    Machado J A T, Silva M F, Barbosa R S, Jesus I S, Reis C M, Marcos M G, Galhano A F 2010 Math. Probl. Eng. 2010 639801

    [26]

    Hu K X, Zhu K Q 2009 Chin. Phys. Lett. 26 108301

    [27]

    Ni J K, Liu C X, Liu K, Liu L 2014 Chin. Phys. B 23 100504

    [28]

    Pan G, Wei J 2015 Acta Phys. Sin. 64 040505 (in Chinese) [潘光, 魏静 2015 物理学报 64 040505]

    [29]

    Huang Y, Liu Y F Peng Z M, Ding Y J 2015 Acta Phys. Sin. 64 030505 (in Chinese) [黄宇, 刘玉峰, 彭志敏, 丁艳军 2015 物理学报 64 030505]

    [30]

    Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp218-236 (in Chinese) [袁晓 2015 分抗逼近电路之数学原理(北京:科学出版社) 第218-236页]

    [31]

    Valkenburg V M E (translated by Yang X J, Zheng J L, Yang W L) 1982 Network Synthesis (Beijing: Science Press) pp222-225 (in Chinese) [〔美〕Valkenburg V M E 著 (杨行峻, 郑君里, 杨为理 译) 1982 网络分析(北京: 科学出版社)第222 -225页]

    [32]

    Yi Z, Yuan X, Tao L, Liu P P 2015 J. Sichuan Univ. (Nat. Sci. Ed.) 6 1255 (in Chinese) [易舟, 袁晓, 陶磊, 刘盼盼 2015 四川大学学报 (自然科学版) 6 1255]

  • [1]

    Steiglitz K 1964 IEEE Trans. Circuit Theory 11 160

    [2]

    Halijak C A 1964 IEEE Trans. Circuit Theory 11 494

    [3]

    Ren Y, Yuan X 2008 J. Sichuan Univ. (Nat. Sci. Ed.) 45 1100 (in Chinese) [任毅, 袁晓 2008 四川大学学报(自然科学版) 45 1100]

    [4]

    Dutta R S C 1967 IEEE Trans. Circuit Theory 14 264

    [5]

    Krishna B T, Reddy K V V S 2008 Act. Passive Electron.Compon. 2008 369421

    [6]

    Krishna B T 2011 Signal Process. 91 386

    [7]

    Liu Y, Pu Y F, Shen X D, Zhou J L 2012 J. Sichuan Univ. (Eng. Sci. Ed.) 44 153 (in Chinese) [刘 彦, 蒲亦非, 沈晓东, 周激流 2012 四川大学学报(工程科学版) 44 153]

    [8]

    Sun H H, Abdelwahab A A, Onaral B 1984 IEEE Trans. Autom Control 29 441

    [9]

    Zou D, Yuan X 2013 J. Sichuan Univ. (Nat. Sci. Ed.) 50 293 (in Chinese) [邹道, 袁晓 2013 四川大学学报(自然科学版) 50 293]

    [10]

    Carlson G E 1960 M. S. Thesis (Manhattan: Kansas State University)

    [11]

    Carlson G E, Halijak C A 1962 IRE Trans. Circuit Theory 9 302

    [12]

    Carlson G E, Halijak C A 1964 IEEE Trans. Circuit Theory 11 210

    [13]

    Zu Y X, Lu Y Q 2007 Network Analysis and Synthesis (Beijing: China Machine Press) pp111-120 (in Chinese) [俎云霄, 吕玉琴 2007 网络分析与综合(北京:机械工业出版社) 第111-120页]

    [14]

    Liao K, Yuan X, Pu Y F, Zhou J L 2006 J. Sichuan Univ. (Eng. Sci. Ed.) 43 104 (in Chinese) [廖科, 袁晓, 蒲亦非, 周激流 2006 四川大学学报(自然科学版) 43 104]

    [15]

    Pu Y F, Yuan X, Liao K, Zhou J L, Zhang N, Zeng Y 2005 Proceedings of IEEE International Conference on Mechatronics and Automation Niagara Falls, Canada, July 29-August 1, 2005 p1375

    [16]

    Liao K, Yuan X, Pu Y F, Zhou J L 2005 J. Sichuan Univ. (Eng. Sci. Ed.) 37 150 (in Chinese) [廖科, 袁晓, 蒲亦非, 周激流 2005四川大学学报(工程科学版) 37 150]

    [17]

    Tsirimokou G Psychalinos C, Elwakil A S 2015 Analog. Integr. Circ. Sig. Process. 85 413

    [18]

    Pu Y F, Yuan X, Liao K, Zhou J L 2006 J. Sichuan Univ. (Eng. Sci. Ed.) 38 128 (in Chinese) [蒲亦非, 袁晓, 廖科, 周激流 2006 四川大学学报(工程科学版) 38 128]

    [19]

    Ortigueira M D Batista A G 2008 Phys. Lett. A 372 958

    [20]

    Ortigueira M D 2008 IEEE Circuits Syst. Mag. 38 19

    [21]

    Magin R, Ortigueira M D, Podlubny I, Trujillo J 2011 Signal Process. 91 350

    [22]

    Sheng H, Chen Y Q, Qiu T S 2012 Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications (Springer London, Dordrecht, Heidelberg, New York: Signals and Communication Technology) pp31-39

    [23]

    Elwakil A S 2010 IEEE Circuits Syst. Mag. 4 40

    [24]

    Podlubny I 1999 Fractional Differential Equations (San Diego(USA): Academic Press) pp252-259

    [25]

    Machado J A T, Silva M F, Barbosa R S, Jesus I S, Reis C M, Marcos M G, Galhano A F 2010 Math. Probl. Eng. 2010 639801

    [26]

    Hu K X, Zhu K Q 2009 Chin. Phys. Lett. 26 108301

    [27]

    Ni J K, Liu C X, Liu K, Liu L 2014 Chin. Phys. B 23 100504

    [28]

    Pan G, Wei J 2015 Acta Phys. Sin. 64 040505 (in Chinese) [潘光, 魏静 2015 物理学报 64 040505]

    [29]

    Huang Y, Liu Y F Peng Z M, Ding Y J 2015 Acta Phys. Sin. 64 030505 (in Chinese) [黄宇, 刘玉峰, 彭志敏, 丁艳军 2015 物理学报 64 030505]

    [30]

    Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp218-236 (in Chinese) [袁晓 2015 分抗逼近电路之数学原理(北京:科学出版社) 第218-236页]

    [31]

    Valkenburg V M E (translated by Yang X J, Zheng J L, Yang W L) 1982 Network Synthesis (Beijing: Science Press) pp222-225 (in Chinese) [〔美〕Valkenburg V M E 著 (杨行峻, 郑君里, 杨为理 译) 1982 网络分析(北京: 科学出版社)第222 -225页]

    [32]

    Yi Z, Yuan X, Tao L, Liu P P 2015 J. Sichuan Univ. (Nat. Sci. Ed.) 6 1255 (in Chinese) [易舟, 袁晓, 陶磊, 刘盼盼 2015 四川大学学报 (自然科学版) 6 1255]

  • [1] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究. 物理学报, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] 王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏. 基于CRDS和WM-DAS的宽量程免标定H2S体积分数的测量. 物理学报, 2022, 71(18): 184205. doi: 10.7498/aps.71.20220742
    [3] 张月荣, 袁晓. 任意阶高运算恒定性分抗逼近电路—标度格型级联双口网络. 物理学报, 2021, 70(4): 048401. doi: 10.7498/aps.70.20201465
    [4] 王飞, 黄益旺, 孙启航. 气泡体积分数对沙质沉积物低频声学特性的影响. 物理学报, 2017, 66(19): 194302. doi: 10.7498/aps.66.194302
    [5] 李兆铭, 杨文革, 丁丹, 廖育荣. 逼近积分点数下限的五阶容积卡尔曼滤波定轨算法. 物理学报, 2017, 66(15): 158401. doi: 10.7498/aps.66.158401
    [6] 范文萍, 蒋晓芸. 带有分数阶热流条件的时间分数阶热波方程及其参数估计问题. 物理学报, 2014, 63(14): 140202. doi: 10.7498/aps.63.140202
    [7] 刁利杰, 张小飞, 陈帝伊. 分数阶并联RLαCβ电路. 物理学报, 2014, 63(3): 038401. doi: 10.7498/aps.63.038401
    [8] 邵书义, 闵富红, 马美玲, 王恩荣. 分数阶Chua's系统错位同步无感模块化电路实现及应用. 物理学报, 2013, 62(13): 130504. doi: 10.7498/aps.62.130504
    [9] 贾红艳, 陈增强, 薛薇. 分数阶Lorenz系统的分析及电路实现. 物理学报, 2013, 62(14): 140503. doi: 10.7498/aps.62.140503
    [10] 黄丽莲, 辛方, 王霖郁. 新分数阶超混沌系统的研究与控制及其电路实现. 物理学报, 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [11] 魏兵, 董宇航, 王飞, 李存志. 基于移位算子时域有限差分的色散薄层节点修正算法. 物理学报, 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
    [12] 孔维姝, 胡林, 张兴刚, 岳国联. 颗粒堆的体积分数与制备流量关系的实验研究. 物理学报, 2010, 59(1): 411-416. doi: 10.7498/aps.59.411
    [13] 张若洵, 杨世平. 分数阶共轭Chen混沌系统中的混沌及其电路实验仿真. 物理学报, 2009, 58(5): 2957-2962. doi: 10.7498/aps.58.2957
    [14] 闵富红, 余杨, 葛曹君. 超混沌分数阶Lü系统电路实验与追踪控制. 物理学报, 2009, 58(3): 1456-1461. doi: 10.7498/aps.58.1456
    [15] 陈向荣, 刘崇新, 王发强, 李永勋. 分数阶Liu混沌系统及其电路实验的研究与控制. 物理学报, 2008, 57(3): 1416-1422. doi: 10.7498/aps.57.1416
    [16] 刘崇新. 一个超混沌系统及其分数阶电路仿真实验. 物理学报, 2007, 56(12): 6865-6873. doi: 10.7498/aps.56.6865
    [17] 王发强, 刘崇新. 分数阶临界混沌系统及电路实验的研究. 物理学报, 2006, 55(8): 3922-3927. doi: 10.7498/aps.55.3922
    [18] 宋菲君. 具有对称性象差的光学系统成象积分算子谱分析. 物理学报, 1992, 41(5): 750-758. doi: 10.7498/aps.41.750
    [19] 熊小明, 周世勋. 分数量子Hall效应的有限集团研究. 物理学报, 1987, 36(12): 1630-1634. doi: 10.7498/aps.36.1630
    [20] 费庆宇, 黄炳忠. 射频溅射无定形硅的总空位体积分数. 物理学报, 1985, 34(11): 1413-1421. doi: 10.7498/aps.34.1413
计量
  • 文章访问数:  5261
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-29
  • 修回日期:  2016-05-27
  • 刊出日期:  2016-08-05

/

返回文章
返回