搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对利用动态光散射法测量颗粒粒径和液体黏度的改进

张颖 郑宇 何茂刚

引用本文:
Citation:

对利用动态光散射法测量颗粒粒径和液体黏度的改进

张颖, 郑宇, 何茂刚

Improvement of dynamic light scattering method for measurement of particle diameter and liquid viscosity

Zhang Ying, Zheng Yu, He Mao-Gang
PDF
导出引用
  • 光散射技术通过测量悬浮液中布朗运动颗粒的平移扩散系数,得到颗粒流体力学直径或液体黏度.本文由单参数模型入手,建立了低颗粒浓度下,单颗粒平移扩散系数与颗粒集体平移扩散系数和颗粒浓度之间的线性依存关系并将其引入光散射法中,从而对现有的测量方法进行了改进.改进后的测量方法可实现纳米尺度球型颗粒标称直径的测量和液体黏度的绝对法测量.以聚苯乙烯颗粒+水和二氧化硅颗粒+乙醇两个分散系为参考样本,通过实验,验证了改进后方法的可行性.此外,还针对上述两个分散系,实验探讨了温度和颗粒浓度对颗粒集体平移扩散系数的影响规律,发现聚苯乙烯颗粒+水分散系中,颗粒间相互作用表现为引力;二氧化硅颗粒+乙醇分散系中,颗粒间相互作用表现为斥力.讨论了颗粒集体平移扩散系数随颗粒浓度变化规律与第二渗透维里系数的关系.
    Dynamic light scattering (DLS) technology has been employed to measure the hydrodynamic diameter of particle and liquid viscosity by detecting the translational diffusion coefficient of Brownian particle in the suspending liquid.The interaction between the particles in the suspension may lead to unpredictable deviations when the Stokes-Einstein equation is applied directly in the measurement.In order to solve this problem,this paper deduced the Stokes-Einstein's equation and introduced the One-Parameter Models to modify the existing DLS measurement principle.Based on the One-Parameter Models,the linear relation of collective translational diffusion coefficient with the single-particle translational diffusion coefficient and particles concentration was established and verified by the measurement under low particle concentration,which was introduced in the DLS principle.The improved method was able to obtain the single-particle translational diffusion coefficient,then the problem caused by the change of particle size in the suspension was solved.Compared with previous methods,the improved method can be used to measure the nominal diameter of nanoscale spherical particles and absolutely detect liquid viscosity.The fundamental principle of detection by light scattering was explained and a DLS experimental system was established for the measurement of viscosity and particle size.The two dispersed systems of polystyrene particles+water and silica particles+alcohol were considered as the samples for reference and measured to verify the reasonability of the improved method presented in this work.In addition,the influence of temperature and particles concentration on the collective translational diffusion coefficient was detected for this two dispersed systems.The interaction between the particles in the suspension was analyzed based on the experimental results. In a two-component system composed of rigid particles and liquid,three types of force act on a particle,which included the “Brownian” force,the direct interactions between the particles and the hydrodynamic interactions.The combined effects of the three forces can be qualitatively described as attractive or repulsive.The collective translational diffusion coefficient of the particles in the suspension increases with the increase of the particle volume concentration,indicating that the force between the particles in the suspension is repulsive,and vice versa.In addition,it was confirmed that in the ideal thin suspension,the Brownian motion of the particles increases with the temperature increases.The experimental results indicated the attractive forces among the polystyrene particles in water and the repulsive force among the silica particles in alcohol.The relationship between the second osmotic virial coefficient and the law of particles' collective translational diffusion coefficient with particles concentration is discussed.
      通信作者: 何茂刚, mghe@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51576161)和中央高校基本科研业务费专项资金(批准号:XJTU-GJQY-001)资助的课题.
      Corresponding author: He Mao-Gang, mghe@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51576161) and the Fundamental Research Funds for the Central Universities of China (Grant No. XJTU-GJQY-001).
    [1]

    Glatter D T O, Sieberer D I J, Schnablegger H 1991 Part. Part. Syst. Charact. 8 274

    [2]

    Jaeger N D, Demeyere H, Foord R, Sneyers R, Vanderdeelen J, Meeren P V D, Laethem M V 1991 Part. Part. Syst. Charact. 8 179

    [3]

    Foord R, Jaeger N D 1991 Part. Part. Syst. Charact. 8 187

    [4]

    Foord R, Jaeger N D, Sneyers R, Geladé E 1992 Part. Part. Syst. Charact. 9 125

    [5]

    Foord R, Deriemaeker L, Jaeger N D, Sneyers R, Vanderdeelen J, Meeren Pvd, Demeyere H, Stone-Masu J, Haestier A, Clauwaert J, Wispelaere W D, Gillioen P, Steyfkens S, Geladé E 1992 Part. Part. Syst. Charact. 10 118

    [6]

    Krahn D I W, Luckas D I M, Lucas D I K 1988 Part. Part. Syst. Charact. 5 72

    [7]

    Phiilles G D H 1981 J. Phys. Chem. 85 2838

    [8]

    Saad H, Bae Y C, Gulari E 1988 Langmuir 1 63

    [9]

    Will S, Leipertz A 1993 Appl. Opt. 21 3913

    [10]

    Will S, Leipertz A 1995 Int. J. Thermophys. 2 433

    [11]

    Will S, Leipertz A 1997 Int. J. Thermophys. 6 1339

    [12]

    Will S, Leipertz A 1999 Int. J. Thermophys. 3 791

    [13]

    He F, Becker G W, Litowski J R, Narhi L O, Brems D N, Razinkov V I 2010 Anal. Biochem. 399 141

    [14]

    Amin S, Rega C A, Jankevics H 2012 Rheol. Acta 51 329

    [15]

    Wagner M, Reiche K, Blume A, Garidel P 2013 Pharm. Dev. Technol. 4 963

    [16]

    Kroner G, Fuchs H, Tatschl R, Glatter O 2003 Part. Part. Syst. Charact. 20 111

    [17]

    Yamaguchi T, Azuma Y, Okuyama K 2006 Part. Part. Syst. Charact. 23 188

    [18]

    Einstein A 1908 Z. Electrochem. 14 235

    [19]

    Finsy R, Devriese A, Lekkerkerker H 1980 J. Chem. Soc. Pakistan 76 767

    [20]

    Robert P 1985 Dynamic Light Scattering (New York and London: Plenum Press) pp85-179

    [21]

    Finsy R 1990 Part. Part. Syst. Charact. 7 74

    [22]

    Smidt J H D, Crommelin D J A 1991 Int. J. Pharmaceut. 77 261

    [23]

    Yang H, Zheng G, Li M C, Chen J B 2008 Acta Photo. Sin. 37 1539 (in Chinese) [杨晖, 郑刚, 李孟超, 陈家璧 2008 光子学报 37 1539]

    [24]

    Huber M L, Perkins R A, Laesecke A, Friend D G, Sengers J V, Assael M J, Metaxa I M, Vogel E, Mares R, Miyagawa K 2009 J. Phys. Chem. Ref. Data 38 101

    [25]

    Zhang S J, Li X, Chen H P, Wang J F, Zhang J M, Zhang M L 2004 J. Chem. Eng. Data 49 760

    [26]

    González B, Calvar N, Gómez E, Domínguez Á 2007 J. Chem. Thermodyn. 39 1578

    [27]

    Gong Y H, Shen C, Lu Y Z, Meng H, Li C X 2011 J. Chem. Eng. Data 57 33

    [28]

    Chen L X, Chen J Y, Song Z H, Cui G K, Xu Y J, Wang X H, Liu J 2015 J. Chem. Thermodyn. 91 292

    [29]

    Kumaga A, Yokoyama C 1998 Int. J. Thermophys. 19 3

    [30]

    Chen S D, Lei Q F, Fang W J 2005 Fluid Phase Equilibria 234 22

    [31]

    Lu X X, Wu D, Ye D F, Wang Y P, Guo Y S, Fang W J 2015 J. Chem. Eng. Data 60 2618

  • [1]

    Glatter D T O, Sieberer D I J, Schnablegger H 1991 Part. Part. Syst. Charact. 8 274

    [2]

    Jaeger N D, Demeyere H, Foord R, Sneyers R, Vanderdeelen J, Meeren P V D, Laethem M V 1991 Part. Part. Syst. Charact. 8 179

    [3]

    Foord R, Jaeger N D 1991 Part. Part. Syst. Charact. 8 187

    [4]

    Foord R, Jaeger N D, Sneyers R, Geladé E 1992 Part. Part. Syst. Charact. 9 125

    [5]

    Foord R, Deriemaeker L, Jaeger N D, Sneyers R, Vanderdeelen J, Meeren Pvd, Demeyere H, Stone-Masu J, Haestier A, Clauwaert J, Wispelaere W D, Gillioen P, Steyfkens S, Geladé E 1992 Part. Part. Syst. Charact. 10 118

    [6]

    Krahn D I W, Luckas D I M, Lucas D I K 1988 Part. Part. Syst. Charact. 5 72

    [7]

    Phiilles G D H 1981 J. Phys. Chem. 85 2838

    [8]

    Saad H, Bae Y C, Gulari E 1988 Langmuir 1 63

    [9]

    Will S, Leipertz A 1993 Appl. Opt. 21 3913

    [10]

    Will S, Leipertz A 1995 Int. J. Thermophys. 2 433

    [11]

    Will S, Leipertz A 1997 Int. J. Thermophys. 6 1339

    [12]

    Will S, Leipertz A 1999 Int. J. Thermophys. 3 791

    [13]

    He F, Becker G W, Litowski J R, Narhi L O, Brems D N, Razinkov V I 2010 Anal. Biochem. 399 141

    [14]

    Amin S, Rega C A, Jankevics H 2012 Rheol. Acta 51 329

    [15]

    Wagner M, Reiche K, Blume A, Garidel P 2013 Pharm. Dev. Technol. 4 963

    [16]

    Kroner G, Fuchs H, Tatschl R, Glatter O 2003 Part. Part. Syst. Charact. 20 111

    [17]

    Yamaguchi T, Azuma Y, Okuyama K 2006 Part. Part. Syst. Charact. 23 188

    [18]

    Einstein A 1908 Z. Electrochem. 14 235

    [19]

    Finsy R, Devriese A, Lekkerkerker H 1980 J. Chem. Soc. Pakistan 76 767

    [20]

    Robert P 1985 Dynamic Light Scattering (New York and London: Plenum Press) pp85-179

    [21]

    Finsy R 1990 Part. Part. Syst. Charact. 7 74

    [22]

    Smidt J H D, Crommelin D J A 1991 Int. J. Pharmaceut. 77 261

    [23]

    Yang H, Zheng G, Li M C, Chen J B 2008 Acta Photo. Sin. 37 1539 (in Chinese) [杨晖, 郑刚, 李孟超, 陈家璧 2008 光子学报 37 1539]

    [24]

    Huber M L, Perkins R A, Laesecke A, Friend D G, Sengers J V, Assael M J, Metaxa I M, Vogel E, Mares R, Miyagawa K 2009 J. Phys. Chem. Ref. Data 38 101

    [25]

    Zhang S J, Li X, Chen H P, Wang J F, Zhang J M, Zhang M L 2004 J. Chem. Eng. Data 49 760

    [26]

    González B, Calvar N, Gómez E, Domínguez Á 2007 J. Chem. Thermodyn. 39 1578

    [27]

    Gong Y H, Shen C, Lu Y Z, Meng H, Li C X 2011 J. Chem. Eng. Data 57 33

    [28]

    Chen L X, Chen J Y, Song Z H, Cui G K, Xu Y J, Wang X H, Liu J 2015 J. Chem. Thermodyn. 91 292

    [29]

    Kumaga A, Yokoyama C 1998 Int. J. Thermophys. 19 3

    [30]

    Chen S D, Lei Q F, Fang W J 2005 Fluid Phase Equilibria 234 22

    [31]

    Lu X X, Wu D, Ye D F, Wang Y P, Guo Y S, Fang W J 2015 J. Chem. Eng. Data 60 2618

  • [1] 郑所生, 黄瑶, 邹鲲, 彭倚天. 刮膜蒸发器内非牛顿流体流场特性数值模拟. 物理学报, 2022, 71(5): 054701. doi: 10.7498/aps.71.20211921
    [2] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索. 物理学报, 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [3] 徐敏, 申晋, 黄钰, 徐亚南, 朱新军, 王雅静, 刘伟, 高明亮. 基于颗粒粒度信息分布特征的动态光散射加权反演. 物理学报, 2018, 67(13): 134201. doi: 10.7498/aps.67.20172377
    [4] 夏辉, 杨伟国. 浓悬浮液中纳米SiO2团聚体的渗透率. 物理学报, 2016, 65(14): 144203. doi: 10.7498/aps.65.144203
    [5] 徐军, 陈钢. 热处理温度对量子点粒度分布的影响. 物理学报, 2015, 64(12): 127302. doi: 10.7498/aps.64.127302
    [6] 赵子傑, 赵云升. 不同粒径沙地表面双向反射特性研究. 物理学报, 2014, 63(18): 187801. doi: 10.7498/aps.63.187801
    [7] 梁刚涛, 郭亚丽, 沈胜强. 液滴低速撞击润湿球面现象观测分析. 物理学报, 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [8] 赵宁, 黄明亮, 马海涛, 潘学民, 刘晓英. 液态Sn-Cu钎料的黏滞性与润湿行为研究. 物理学报, 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [9] 安保林, 林鸿, 刘强, 段远源. 基于圆柱定程干涉法测量气体黏度的探索. 物理学报, 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [10] 吴迎春, 吴学成, Sawitree Saengkaew, 姜淏予, 洪巧巧, Gérard Gréhan, 岑可法. 全场彩虹技术测量喷雾浓度及粒径分布. 物理学报, 2013, 62(9): 090703. doi: 10.7498/aps.62.090703
    [11] 林瑜, 杨光参, 王艳伟. DNA平衡离子凝聚的动态光散射分析. 物理学报, 2013, 62(11): 118702. doi: 10.7498/aps.62.118702
    [12] 邵学鹏, 解文军. 声悬浮条件下黏性液滴的扇谐振荡规律研究. 物理学报, 2012, 61(13): 134302. doi: 10.7498/aps.61.134302
    [13] 胡克艳, 李红军, 徐军, 杨秋红, 苏良碧, 唐强. 不同粒径-Al2O3:C晶态粉体热释光和光释光特性. 物理学报, 2012, 61(15): 157802. doi: 10.7498/aps.61.157802
    [14] 耿西钊, 哈斯乌力吉, 郭翔宇, 李杏, 林殿阳, 何伟明, 范瑞清, 吕志伟. 利用受激布里渊散射能量反射率测量液体介质运动黏度方法的研究. 物理学报, 2011, 60(5): 054208. doi: 10.7498/aps.60.054208
    [15] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [16] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 基于成分连续变化计算黏度的合金系临界冷速模型. 物理学报, 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [17] 荣利霞, 魏柳荷, 董宝中, 王俊, 李福绵, 李子臣. 两亲性嵌段聚合物的同步辐射小角x射线散射研究. 物理学报, 2002, 51(8): 1773-1777. doi: 10.7498/aps.51.1773
    [18] 张逸新, 许 强. 光学与粒径耦合多分散性的动态光散射研究. 物理学报, 1999, 48(4): 735-743. doi: 10.7498/aps.48.735
    [19] 王刚, 杨国权, 管荻华, 姜莉, 帕斯夸利·毛罗, 皮斯托亚·詹弗兰科, 解思深. 阻抗谱法确定扩散系数. 物理学报, 1995, 44(12): 1964-1968. doi: 10.7498/aps.44.1964
    [20] 张希清, 赵家龙, 秦伟平, 窦凯, 黄世华. 用非相干光时间延迟四波混频测量二极扩散系数. 物理学报, 1993, 42(3): 417-421. doi: 10.7498/aps.42.417
计量
  • 文章访问数:  2998
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-02
  • 修回日期:  2018-05-22
  • 刊出日期:  2019-08-20

对利用动态光散射法测量颗粒粒径和液体黏度的改进

  • 1. 西安交通大学, 热流科学与工程教育部重点实验室, 西安 710049
  • 通信作者: 何茂刚, mghe@mail.xjtu.edu.cn
    基金项目: 国家自然科学基金(批准号:51576161)和中央高校基本科研业务费专项资金(批准号:XJTU-GJQY-001)资助的课题.

摘要: 光散射技术通过测量悬浮液中布朗运动颗粒的平移扩散系数,得到颗粒流体力学直径或液体黏度.本文由单参数模型入手,建立了低颗粒浓度下,单颗粒平移扩散系数与颗粒集体平移扩散系数和颗粒浓度之间的线性依存关系并将其引入光散射法中,从而对现有的测量方法进行了改进.改进后的测量方法可实现纳米尺度球型颗粒标称直径的测量和液体黏度的绝对法测量.以聚苯乙烯颗粒+水和二氧化硅颗粒+乙醇两个分散系为参考样本,通过实验,验证了改进后方法的可行性.此外,还针对上述两个分散系,实验探讨了温度和颗粒浓度对颗粒集体平移扩散系数的影响规律,发现聚苯乙烯颗粒+水分散系中,颗粒间相互作用表现为引力;二氧化硅颗粒+乙醇分散系中,颗粒间相互作用表现为斥力.讨论了颗粒集体平移扩散系数随颗粒浓度变化规律与第二渗透维里系数的关系.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回