搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理温度对量子点粒度分布的影响

徐军 陈钢

引用本文:
Citation:

热处理温度对量子点粒度分布的影响

徐军, 陈钢

Influence of annealing temperature on the distribution of particle sizes of quantum dots doped glass

Xu Jun, Chen Gang
PDF
导出引用
  • 为了明确热处理温度对熔融法制备PbSe量子点玻璃材料的影响, 实验对比了核化时间、晶化温度、晶化时间对晶体大小、粒度分布和吸收光谱特性的影响. 在相同核化温度、不同晶化温度条件下, 各样品的透射电子显微镜图显示都有一定量的晶体形成, 但其晶化程度、尺寸大小及分布有明显不同. 通过计算晶体粒度分布定量地揭示出, 随着晶化温度的提高, 量子点晶体尺寸逐渐增大, 从而提高了晶体颗粒的浓度. 吸收光谱的测量也表明, 随着晶化温度的升高, 吸收峰从无到有不断增强且出现红移现象. 而当晶化温度较低时, 虽有晶体形成, 但无明显吸收峰, 主要是由于晶体尺寸较小, 浓度较低, 晶体颗粒的吸收峰被背景材料所掩盖. 研究结果可为制备具有一定浓度的不同尺寸的量子点晶体, 进而获得多个波段下较强的吸收和辐射的量子点玻璃提供一定的参考.
    In order to understand the influence of annealing temperature on PbSe quantum dots doped glass produced by a melt-annealing technique, experiments are carried out to compare the influences of different nucleation durations, crystallization temperatures and time on the particle size, distribution and absorption spectrum. Under the condition of the same nucleation temperatures and different crystallization temperatures, the transmission electron microscope images of all samples show that a certain quantity of PbSe crystals are crystallized in the glass. While the particle sizes and densities are slightly different. The calculated distribution of the particle sizes quantitatively indicates that the particle size will be enlarged with the increase of crystallization temperature and the crystal particle density. The measured absorption spectrum shows that the peak value of absorption spectrum increases gradually with increasing the crystallization temperature. At the same time, the peak value shows a red-shift phenomenon. While under the relatively low crystallization temperature, the infrared absorption peak cannot be obtained in spite that some crystals have grown inside the glass. The absorption spectrum is covered up by the background signals because of the relatively smaller particle size and density. This work will be benefit of producing different size quantum dots with a certain density, and realizing stronger absorption and emission in multiband.
    • 基金项目: 浙江工业大学校基金重点项目(批准号:2013XZ010)和浙江省科技厅项目(批准号:Y200908017)资助的课题.
    • Funds: Supported by the Key Program of the Science Foundation of Zhejiang University of Technology, China (Grant No. 2013XZ010) and the Program for the Science and Technology Department of Zhejiang Province, China (Grant No. Y200908017).
    [1]

    Zhang P J, Sun H Q, Guo Z Y, Wang D Y, Xie X Y, Cai J X, Zheng H, Xie N, Yang B 2013 Acta Phys. Sin. 62 117304 (in Chinese) [张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌 2013 物理学报 62 117304]

    [2]

    Sheng L, Li H C, Yang Y Y, Sheng D N, Xing D Y 2013 Chin. Phys. B 22 067201

    [3]

    Xu T N, Wu H Z, Si J X 2008 Acta Phys. Sin. 57 2574 (in Chinese) [徐天宁, 吴惠桢, 斯剑霄 2008 物理学报 57 2574]

    [4]

    Guo Y, Sun L L, Chi F 2014 Commun. Theor. Phys. 62 423

    [5]

    Dai X L, Zhang Z X, Jin Y Z, Niu Y, Cao H J, Liang X Y, Chen L W, Wang J P, Peng X G 2014 Nature 515 96

    [6]

    Wu J, Wang Z M, Dorogan V G, Li S B, Lee J, Mazur Y I, Kim E S, Salamo G J 2013 Nanoscale Res. Lett. 8 1

    [7]

    Wu J, Shao D L, Li Z H, Manasreh M O, Kunets V P, Wang Z M, Salamo G J 2009 Appl. Phys. Lett. 95 071908

    [8]

    Cheng C, Zhang H 2006 Acta Phys. Sin. 55 4139 (in Chinese) [程成, 张航 2006 物理学报 55 4139]

    [9]

    Zhang L G, Sheng D Z 2005 Chin. Phys. Lett. 22 1518

    [10]

    Lakatos T 1976 Glastek.Tidskr 31 51

    [11]

    Lifshitz E, Bashouti M, Kloper V, Kigel A, Eisen M S, Berger S 2003 Nano Lett. 3 857

    [12]

    Lipovskii A, Kolobkova E, Petrikov V, Kang I, Olkhovets A, Krauss T, Thomas M, Silcox J, Wise F, Shen Q, Kycia S 1997 Appl. Phys. Lett. 71 3406

    [13]

    Chang J, Liu C, Heo J 2009 Non-Cryst. Solid 355 1897

    [14]

    Loiko P A, Rachkovskaya G E, Zacharevich G B, Gurin V S, Gaponenko M S, Yumashev V 2012 Non-Cryst. Solids 358 1840

    [15]

    Ma D W, Cheng C, Zhang Y N 2014 Opt. Mater. 37 834

    [16]

    Silva R S, Morais P C, Alcalde A M 2006 Non-Crys. Solids 352 3522

    [17]

    Jiang H L, Cheng C, Ma D W 2011 J. Optoelectron. Laser 22 872 (in Chinese) [江惠绿, 程成, 马德伟 2011 光电子·激光 22 872]

    [18]

    Ma D W, Zhang Y N, Xu Z S 2014 J. Am. Ceram. Soc. 97 2455

    [19]

    Huang W 2008 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [黄纬 2008 硕士学位论文(杭州: 浙江大学)]

    [20]

    Yang Y, Zhang H, Cheng C 2013 J. Opt. Soc. Am. B 30 3022

    [21]

    Zhang W J, Zhai B C, Xu J 2012 Chin. J. Luminescence 33 1171 (in Chinese) [张文君, 翟保才, 许键 2012 发光学报 33 1171]

  • [1]

    Zhang P J, Sun H Q, Guo Z Y, Wang D Y, Xie X Y, Cai J X, Zheng H, Xie N, Yang B 2013 Acta Phys. Sin. 62 117304 (in Chinese) [张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌 2013 物理学报 62 117304]

    [2]

    Sheng L, Li H C, Yang Y Y, Sheng D N, Xing D Y 2013 Chin. Phys. B 22 067201

    [3]

    Xu T N, Wu H Z, Si J X 2008 Acta Phys. Sin. 57 2574 (in Chinese) [徐天宁, 吴惠桢, 斯剑霄 2008 物理学报 57 2574]

    [4]

    Guo Y, Sun L L, Chi F 2014 Commun. Theor. Phys. 62 423

    [5]

    Dai X L, Zhang Z X, Jin Y Z, Niu Y, Cao H J, Liang X Y, Chen L W, Wang J P, Peng X G 2014 Nature 515 96

    [6]

    Wu J, Wang Z M, Dorogan V G, Li S B, Lee J, Mazur Y I, Kim E S, Salamo G J 2013 Nanoscale Res. Lett. 8 1

    [7]

    Wu J, Shao D L, Li Z H, Manasreh M O, Kunets V P, Wang Z M, Salamo G J 2009 Appl. Phys. Lett. 95 071908

    [8]

    Cheng C, Zhang H 2006 Acta Phys. Sin. 55 4139 (in Chinese) [程成, 张航 2006 物理学报 55 4139]

    [9]

    Zhang L G, Sheng D Z 2005 Chin. Phys. Lett. 22 1518

    [10]

    Lakatos T 1976 Glastek.Tidskr 31 51

    [11]

    Lifshitz E, Bashouti M, Kloper V, Kigel A, Eisen M S, Berger S 2003 Nano Lett. 3 857

    [12]

    Lipovskii A, Kolobkova E, Petrikov V, Kang I, Olkhovets A, Krauss T, Thomas M, Silcox J, Wise F, Shen Q, Kycia S 1997 Appl. Phys. Lett. 71 3406

    [13]

    Chang J, Liu C, Heo J 2009 Non-Cryst. Solid 355 1897

    [14]

    Loiko P A, Rachkovskaya G E, Zacharevich G B, Gurin V S, Gaponenko M S, Yumashev V 2012 Non-Cryst. Solids 358 1840

    [15]

    Ma D W, Cheng C, Zhang Y N 2014 Opt. Mater. 37 834

    [16]

    Silva R S, Morais P C, Alcalde A M 2006 Non-Crys. Solids 352 3522

    [17]

    Jiang H L, Cheng C, Ma D W 2011 J. Optoelectron. Laser 22 872 (in Chinese) [江惠绿, 程成, 马德伟 2011 光电子·激光 22 872]

    [18]

    Ma D W, Zhang Y N, Xu Z S 2014 J. Am. Ceram. Soc. 97 2455

    [19]

    Huang W 2008 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [黄纬 2008 硕士学位论文(杭州: 浙江大学)]

    [20]

    Yang Y, Zhang H, Cheng C 2013 J. Opt. Soc. Am. B 30 3022

    [21]

    Zhang W J, Zhai B C, Xu J 2012 Chin. J. Luminescence 33 1171 (in Chinese) [张文君, 翟保才, 许键 2012 发光学报 33 1171]

计量
  • 文章访问数:  1907
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-23
  • 修回日期:  2015-02-06
  • 刊出日期:  2015-06-05

热处理温度对量子点粒度分布的影响

  • 1. 浙江工业大学应用物理系, 杭州 310023
    基金项目: 

    浙江工业大学校基金重点项目(批准号:2013XZ010)和浙江省科技厅项目(批准号:Y200908017)资助的课题.

摘要: 为了明确热处理温度对熔融法制备PbSe量子点玻璃材料的影响, 实验对比了核化时间、晶化温度、晶化时间对晶体大小、粒度分布和吸收光谱特性的影响. 在相同核化温度、不同晶化温度条件下, 各样品的透射电子显微镜图显示都有一定量的晶体形成, 但其晶化程度、尺寸大小及分布有明显不同. 通过计算晶体粒度分布定量地揭示出, 随着晶化温度的提高, 量子点晶体尺寸逐渐增大, 从而提高了晶体颗粒的浓度. 吸收光谱的测量也表明, 随着晶化温度的升高, 吸收峰从无到有不断增强且出现红移现象. 而当晶化温度较低时, 虽有晶体形成, 但无明显吸收峰, 主要是由于晶体尺寸较小, 浓度较低, 晶体颗粒的吸收峰被背景材料所掩盖. 研究结果可为制备具有一定浓度的不同尺寸的量子点晶体, 进而获得多个波段下较强的吸收和辐射的量子点玻璃提供一定的参考.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回