搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于巴黎-爱丁堡压机的高压中子衍射技术

史钰 陈喜平 谢雷 孙光爱 房雷鸣

引用本文:
Citation:

基于巴黎-爱丁堡压机的高压中子衍射技术

史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣

High-pressure neutron diffraction techniques based on Paris-Edingburgh press

Shi Yu, Chen Xi-Ping, Xie Lei, Sun Guang-Ai, Fang Lei-Ming
PDF
HTML
导出引用
  • 巴黎-爱丁堡压机(Paris-Edinburgh press)可配合中子衍射对物质在高压下的结构变化进行研究. 自20世纪90年代开始, 已在材料学、地学、化学等众多领域得到了广泛应用. 本研究利用巴黎-爱丁堡压机在中国绵阳研究堆(CMRR)的高压中子衍射谱仪(凤凰)上成功开展了高压中子衍射实验. 实验由一台载荷为200 MPa的单缸柱塞泵为巴黎-爱丁堡压机提供加载压力, 并发展了一套与谱仪集成的自动定位系统对样品进行定位. 利用铁作为样品, 分别使用单凹曲面和双凹曲面两种碳化钨(WC)压砧, 成功获得了约10 GPa压力范围内的高压原位中子衍射谱. 实验结果显示, 双凹曲面组装可以稳定地承受100 MPa的负载压力, 而单凹曲面封垫在80 MPa左右的负载压力下就开始不稳定而发生放炮. 研究结果表明, 双凹曲面压砧的凹槽增强了封垫的侧向支撑能力, 使双凹曲面组装比单凹曲面组装具有更好的稳定性. 研究结果对进一步优化巴黎-爱丁堡压机的压砧及封垫具有重要的指导意义.
    Since the 1990s, with the benefit of available large-volumed samples, wide detector windows, and portability, Paris-Edinburgh press has been widely used in neutron facilities to study the structures and physical properties of condensed matter under high-pressure extreme conditions. In the present study, We perform high-pressure neutron diffraction experiments in neutron source of China using the Paris-Edinburgh press. The experiments are carried out on a high-pressure neutron diffraction spectrometer (Fenghuang) at China Mianyang Research Reactor (CMRR). Fenghuang is a high-intensity and moderate-resolution diffractometer which has been upgraded from a neutron powder diffractometer and can be used under ambient and extreme conditions. A single cylinder pump with a max load of 200 MPa provides a loading pressure for Paris-Edinburgh press, and a precise mobile platform is used to hang and to locate the Paris-Edinburgh press. Using the tungsten-carbide (WC) toroidal anvils with TiZr gasket, we obtain the neutron diffraction spectra of Fe samples at different pressures successfully. We also obtain the neutron diffraction spectra respectively at pressures of 9.7 GPa and 10.7 GPa by using a WC single-toroidal anvil and a WC double-toroidal anvil under load 100 MPa. The TiZr gasket blows out before the load reaches 100 MPa in the WC single-toroidal anvil assembly, while it remains good in the WC double-toroidal anvil assembly under the same load. The WC single-toroidal anvil assembly becomes unstable under load about 80 MPa, and the WC double-toroidal anvil assembly is still stable under load 100 MPa. Thus, the stability of the double-toroidal anvil assembly is much higher than that of the single-toroidal anvil assembly. It is found that the thickness of the gasket edge is very important for the stability of the assembly during loading. The thicker the edge of the gasket, the more stable the assembly is. The main reason is that the groove of the double concave anvil can enhance the lateral support ability of the gasket, thereby making the double concave surface assembly more stable than the single concave surface assembly.
      通信作者: 房雷鸣, flmyaya2008@163.com
    • 基金项目: 国家自然科学基金(批准号: 11704276, 21573159, 11674365, 11874397)资助的课题.
      Corresponding author: Fang Lei-Ming, flmyaya2008@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704276, 21573159, 11674365, 11874397).
    [1]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [2]

    Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L, Wen B, He J, Liu Z 2013 Nature 493 385Google Scholar

    [3]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [4]

    Xu J A, Mao H K, Bell P M 1986 Science 232 4756

    [5]

    Sun G, Zhang C, Chen B, Gong J, Peng S 2016 Neutron News 27 21

    [6]

    Neumann D A 2006 Mater. Today 9 34

    [7]

    Shull C G, Strauser W A, Wollan E O 1951 Phys. Rev. 83 333Google Scholar

    [8]

    Fang L, Wang Y, Chen X, Sun G, Chen B, Peng S 2014 Chin. Phys. B 23 110701Google Scholar

    [9]

    Ni X, Fang L, Li X, Chen X, Xie L, He D, Kou Z 2018 Chin. Phys. Lett. 35 040701Google Scholar

    [10]

    Besson J M, Nelmes R J, Hamel G, Loveday J S, Weill G, Hull S 1992 Physica B 180−181 907

    [11]

    Klotz S, Strässle T, Rousse G, Hamel G, Pomjakushin V 2005 Appl. Phys. Lett. 86 031917Google Scholar

    [12]

    Klotz S, Godec Y L, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar

    [13]

    Klotz S 2013 Techniques in High Pressure Neutron Scattering (Boca Raton: Taylor & Francis Group CRC Press) pp123−124

    [14]

    Lei L, Zhang L, Gao S, Hu Q, Fang L, Chen X, Xia Y, Wang X, Ohfuji H, Kojima Y, Redfern S A T, Zeng Z, Chen B, He D, Irifune T 2018 J. Alloys Compd. 752 99Google Scholar

    [15]

    Xia Y, Wu R, Zhang Y, Liu S, Du H, Han J, Wang C, Chen X, Xie L, Yang Y, Yang J 2017 Phys. Rev. B 96 064440Google Scholar

    [16]

    Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A 2018 Rev. Sci. Instrum. 89 053906Google Scholar

    [17]

    Wang Y, Dong X, Tang X, Zheng H, Li K, Lin X, Fang L, Sun G, Chen X, Xie L, Bull C L, Funnell N P, Hattori T, Sano-Furukawa A, Chen J, Hensley D K, Cody G, Ren Y, Lee H H, Mao H K 2019 Angew. Chem. 58 1468Google Scholar

    [18]

    Xie L, Chen X, Fang L, Sun G, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R, Bulkin A P, Kalinin S I, Wang Y, Wang X 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 31Google Scholar

    [19]

    Mao H K, Bassett W A, Takahashi T 1967 J. Appl. Phys. 38 272Google Scholar

    [20]

    Fang J, Bull C L, Loveday J S, Nelmes R J, Kamenev K V 2012 Rev. Sci. Instrum. 83 093902Google Scholar

  • 图 1  巴黎-爱丁堡压机V型(左图)和VX型(右图)的横截面示意图[13]. ①液压入口; ②油缸; ③油腔; ④O型密封圈; ⑤加压主体框架; ⑥压砧; ⑦底座; ⑧后座; ⑨光路通孔; ⑩螺母; ⑪上压块; ⑫螺杆; ⑬垫片; ⑭钢柱

    Fig. 1.  Cross section of Paris-Edinburgh press type V(left) and type VX(right). ① Hydraulic fluid inlet; ② cylinder; ③ piston; ④ O-ring seal; ⑤ load frame; ⑥ anvils; ⑦ TC backing plates(seats); ⑧ breech; ⑨ front collimator; ⑩ nut; ⑪ top platen; ⑫ tie rod; ⑬ backing disc; ⑭ steel spacer.

    图 2  高压中子衍射谱仪布局图

    Fig. 2.  Top view schematic of the HPND at CMRR.

    图 3  单缸柱塞泵与定位系统实物图

    Fig. 3.  Hydraulic pump and mobile platform.

    图 4  单凹曲面压砧(左)与双凹曲面压砧(右)实物图

    Fig. 4.  The single toroidal anvil (left) and double toroidal anvil (right).

    图 5  压砧、封垫和样品组装示意图

    Fig. 5.  The single toroidal (up) and double toroidal (down) assemblies with anvil, gasket, and sample.

    图 6  加压前封垫(a)—(c)与加压后封垫(d)—(f)实物图 (a) 加压前双凹曲面封垫组装; (b) 加压前单凹曲面封垫组装; (c) 加压前单凹曲面封垫与样品; (d) 加压后双凹曲 面封垫; (e) 加压后单凹曲面封垫; (f) 放炮后单凹曲面封垫

    Fig. 6.  Picture of the gasket before compression (a)−(c) and after compression (d)−(f): (a) Gasket of DT anvil before compression; (b) gasket of ST anvil before compression; (c) gasket of ST anvil before compression with sample; (d) gasket of DT anvil after compression; (e) gasket of ST anvil before compression; (f) gasket of ST anvil after blowing out.

    图 7  加压曲线示意图

    Fig. 7.  Diagram of loading forces-times curve.

    图 8  不同压力下的中子衍射谱

    Fig. 8.  Neutron diffraction spectra of different loading forces and different assemblies.

    图 9  样品压力随负载压力的变化曲线

    Fig. 9.  Sample pressures-loading forces curves.

    图 10  加压前后封垫的厚度对比

    Fig. 10.  Comparison of the thickness of gaskets before and after compression.

    表 1  巴黎-爱丁堡压机型号及主要特征[13]. Capacity为最大加载力, 单位为MPa. 所有尺寸单位为mm

    Table 1.  Types of Pairs-Edinburgh presses and principal characteristics[13]. Capacity is the maximum load in tons. All dimensions are in mm.

    Type Capacity Mass/kg Diam. ram Diam. piston
    VX1 50 10 120 50
    VX2 50 10 120 50
    V3 250 50 248 114
    VX3 200 50 230 114
    V4 250 50 248 114
    VX4 200 50 230 114
    V5 150 35 198 92
    VX5 130 35 180 92
    V7 450 90 305 150
    V8 450 90 305 150
    下载: 导出CSV

    表 2  不同加载压力下衍射峰拟合得到的晶格参数、晶胞体积及样品压力

    Table 2.  The lattice constant, volume, and sample pressures obtained by fitting diffraction peak at different loading force.

    Loading force/MPa hkl for fitting diffraction peaks a V3 P/GPa
    SA-0 (110)(200)(211) 2.86388(24) 23.4889(118) 0
    SA-50 (110)(211)(220) 2.84134(94) 22.9388(462) 4.35(39)
    SA-80 (110)(220) 2.82567(138) 22.5612(677) 7.64(62)
    SA-100 (110)(220) 2.81640(164) 22.3401(802) 9.70(77)
    DA-0 (110)(200)(211) 2.86439(58) 23.5016(288) 0
    DA-50 (110)(211)(220) 2.83609(122) 22.8119(597) 5.53(52)
    DA-80 (110)(220) 2.82200(194) 22.4735(949) 8.56(89)
    DA-100 (110)(220) 2.81255(9) 22.2486(44) 10.70(4)
    下载: 导出CSV

    表 3  测量加压前后封垫的厚度.#1, #2, #5为未发生放炮的封垫, #3, #4为发生放炮的封垫

    Table 3.  The thickness of gaskets before and after compression. #1, #2 and #5 are the gaskets without blowing out during compression. #3, #4 are the gaskets with blowing out.

    Before compression After compression
    Sample/
    mm
    Gasket1/
    mm
    Gasket2/
    mm
    Gasket3/
    mm
    Gasket4/
    mm
    Sample/
    mm
    D1/
    mm
    D2/
    mm
    D3/
    mm
    D4/
    mm
    D5/
    mm
    Loading force/MPa
    #1 4.75 1.75 2.50 3.75 0.75 1.93 0.43 80
    #2 4.75 1.75 2.50 3.70 0.70 1.85 0.35 100
    #3 4.75 1.75 2.50 3.88 0.88 1.69 0.19 78
    #4 4.75 1.75 2.50 3.17 0.17 1.46 0 83
    #5 3.60 1.60 2.50 1.00 1.80 2.75 0.95 1.58 0.78 1.43 0.63 100
    下载: 导出CSV
  • [1]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [2]

    Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L, Wen B, He J, Liu Z 2013 Nature 493 385Google Scholar

    [3]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [4]

    Xu J A, Mao H K, Bell P M 1986 Science 232 4756

    [5]

    Sun G, Zhang C, Chen B, Gong J, Peng S 2016 Neutron News 27 21

    [6]

    Neumann D A 2006 Mater. Today 9 34

    [7]

    Shull C G, Strauser W A, Wollan E O 1951 Phys. Rev. 83 333Google Scholar

    [8]

    Fang L, Wang Y, Chen X, Sun G, Chen B, Peng S 2014 Chin. Phys. B 23 110701Google Scholar

    [9]

    Ni X, Fang L, Li X, Chen X, Xie L, He D, Kou Z 2018 Chin. Phys. Lett. 35 040701Google Scholar

    [10]

    Besson J M, Nelmes R J, Hamel G, Loveday J S, Weill G, Hull S 1992 Physica B 180−181 907

    [11]

    Klotz S, Strässle T, Rousse G, Hamel G, Pomjakushin V 2005 Appl. Phys. Lett. 86 031917Google Scholar

    [12]

    Klotz S, Godec Y L, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar

    [13]

    Klotz S 2013 Techniques in High Pressure Neutron Scattering (Boca Raton: Taylor & Francis Group CRC Press) pp123−124

    [14]

    Lei L, Zhang L, Gao S, Hu Q, Fang L, Chen X, Xia Y, Wang X, Ohfuji H, Kojima Y, Redfern S A T, Zeng Z, Chen B, He D, Irifune T 2018 J. Alloys Compd. 752 99Google Scholar

    [15]

    Xia Y, Wu R, Zhang Y, Liu S, Du H, Han J, Wang C, Chen X, Xie L, Yang Y, Yang J 2017 Phys. Rev. B 96 064440Google Scholar

    [16]

    Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A 2018 Rev. Sci. Instrum. 89 053906Google Scholar

    [17]

    Wang Y, Dong X, Tang X, Zheng H, Li K, Lin X, Fang L, Sun G, Chen X, Xie L, Bull C L, Funnell N P, Hattori T, Sano-Furukawa A, Chen J, Hensley D K, Cody G, Ren Y, Lee H H, Mao H K 2019 Angew. Chem. 58 1468Google Scholar

    [18]

    Xie L, Chen X, Fang L, Sun G, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R, Bulkin A P, Kalinin S I, Wang Y, Wang X 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 31Google Scholar

    [19]

    Mao H K, Bassett W A, Takahashi T 1967 J. Appl. Phys. 38 272Google Scholar

    [20]

    Fang J, Bull C L, Loveday J S, Nelmes R J, Kamenev K V 2012 Rev. Sci. Instrum. 83 093902Google Scholar

  • [1] 杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威. 巴黎-爱丁堡压机中子衍射高压下温度加载实验. 物理学报, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [2] 戴逸, 王文丹, 法志湘, 王路, 王菊, 梁策, 李星翰. 八面腔压机中一定尺寸的二级压砧上运行的最大组装. 物理学报, 2021, 70(14): 144702. doi: 10.7498/aps.70.20210006
    [3] 江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证. 物理学报, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [4] 朱金龙, 赵予生, 靳常青. 水合物研制、结构与性能及其在能源环境中的应用. 物理学报, 2019, 68(1): 018203. doi: 10.7498/aps.68.20181639
    [5] 王海阔, 任瑛, 贺端威, 许超. 六面顶压机立方压腔内压强的定量测量及受力分析. 物理学报, 2017, 66(9): 090702. doi: 10.7498/aps.66.090702
    [6] 王海阔, 贺端威, 许超, 刘方明, 邓佶睿, 何飞, 王永坤, 寇自力. 复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35GPa. 物理学报, 2013, 62(18): 180703. doi: 10.7498/aps.62.180703
    [7] 孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY. 原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理. 物理学报, 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [8] 孙光爱, 陈波, 吴二冬, 李武会, 张功, 汪小琳, V. Ji, T. Pirling, D. Hughes. 中子衍射分析时效处理对镍基单晶高温合金相结构的影响. 物理学报, 2011, 60(8): 086102. doi: 10.7498/aps.60.086102
    [9] 刘晓静, 张佰军, 李海波, 刘兵, 张春丽, 郭义庆, 张丙新. 应用量子理论方法研究中子双缝衍射. 物理学报, 2010, 59(6): 4117-4122. doi: 10.7498/aps.59.4117
    [10] 孙光爱, Darren Hughes, Thilo Pirling, Vincent Ji, 陈波, 陈华, 吴二冬, 张俊. 中子衍射法研究单晶镍基高温合金热机械疲劳引起的应力和晶格错配. 物理学报, 2009, 58(4): 2549-2555. doi: 10.7498/aps.58.2549
    [11] 鲁 毅, 李庆安, 邸乃力, 成昭华, 薛艳杰, 张 莉, 陈 娜, 肖红文, 张百生, 陈东凤. Nd0.5Sr0.4Pb0.1MnO3的结构和磁性. 物理学报, 2003, 52(8): 2057-2060. doi: 10.7498/aps.52.2057
    [12] 杨继廉, 张百生, 丁永凡, 周蕙明, 金兰, 叶春堂, 杨应昌, 孙红, 孔麟书. Y(TiFe)12的中子衍射研究. 物理学报, 1989, 38(4): 665-669. doi: 10.7498/aps.38.665
    [13] 杨继廉, 张百生, 徐治江, 周蕙明, 金兰, 叶春堂, 余梅, 周增均. 掺钛的锰锌铁氧体的中子衍射. 物理学报, 1987, 36(12): 1610-1613. doi: 10.7498/aps.36.1610
    [14] 成之绪, 程玉芬, 张泮霖, 严启伟. 用中子衍射测定DTGS晶体中氘原子的位置. 物理学报, 1986, 35(5): 643-652. doi: 10.7498/aps.35.643
    [15] 严启伟. 室温下KLiSO4晶体的中子衍射结构分析. 物理学报, 1984, 33(3): 425-427. doi: 10.7498/aps.33.425
    [16] 曾祥欣, 朱家瑄, 金兰, 周蕙明, 张百生, 杨继廉, 杨应昌, 何文望, 林勤, 罗胜, 裴谐弟. Y(Mn1-xCox)12的中子衍射研究. 物理学报, 1983, 32(12): 1608-1612. doi: 10.7498/aps.32.1608
    [17] 杨应昌, 何文望, 林勤, 杨继廉, 周蕙明, 朱家瑄, 曾祥欣, 张百生, 金兰. MnAlC永磁合金的中子衍射研究. 物理学报, 1983, 32(11): 1455-1459. doi: 10.7498/aps.32.1455
    [18] 钱祥荣. Fe-Si-Al合金的中子衍射研究. 物理学报, 1981, 30(7): 887-894. doi: 10.7498/aps.30.887
    [19] 周国生. 凹(平)面衍射光栅稳定共振腔的近似分析. 物理学报, 1978, 27(6): 681-690. doi: 10.7498/aps.27.681
    [20] 安万寿, 张焕乔, 杨继廉, 朱家瑄, 李光定. 中子衍射仪的构造与性能. 物理学报, 1961, 17(5): 222-228. doi: 10.7498/aps.17.222
计量
  • 文章访问数:  7906
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-30
  • 修回日期:  2019-04-10
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回