搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H3BO3对Y1.98O3:Eu0.01, Dy0.01红色长余辉发光材料结构和余辉性能的影响

谢伟 王银海 全军 邹长伟 梁枫 邵乐喜

引用本文:
Citation:

H3BO3对Y1.98O3:Eu0.01, Dy0.01红色长余辉发光材料结构和余辉性能的影响

谢伟, 王银海, 全军, 邹长伟, 梁枫, 邵乐喜

Effect of H3BO3 on structure and long persistence properties of Y1.98O3:Eu, Dy red long-afterglow phosphor

Xie Wei, Wang Yin-Hai, Quan Jun, Zou Chang-Wei, Liang Feng, Shao Le-Xi
PDF
导出引用
  • 采用高温固相法制备了发光样品Y1.98O3:Eu0.013+,Dy0.013+. 采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、荧光光谱仪、单光子计数器测试了不同含量的H3BO3对Y1.98O3:Eu0.013+,Dy0.013+物相结构、颗粒形貌、发光性能、余辉性能的影响. 结果表明当H3BO3含量低于8%(mol)时,样品可保持Y2O3晶格结构,且样品颗粒随H3BO3的含量增加逐渐增大. 样品光致发光由Eu3+离子电子的5D0→7FJ 跃迁所致,主峰位于612 nm,且发光强度随H3BO3 含量的增加呈线性增强. 随着H3BO3 含量的增加,样品余辉衰减时间逐渐增加,热释光谱分析表明H3BO3 的加入增加了基质陷阱能级的深度与浓度,故而导致样品长余辉性能的变化.
    The phosphor Y1.98O3: Eu0.013+, Dy0.013+ was prepared by high temperature solid reaction method. X-ray powder diffraction (XRD), scanning electronic microscope (SEM), photoluminescence spectra (PL), and single-photon counter system were used to investigate the structure, morphology, luminescent properties, and decay characteristics of the phosphor Y1.98O3: Eu0.013+, Dy0.013+ which was synthesized with different contents of H3BO3. Results show that the structure of the H3BO3-contained phosphors can keep Y2O3 matrix when the content of H3BO3 is below 8%(mol), and the particles size of phosphors increases during the addition of H3BO3. The luminescence of phosphors come from the transition of 5D0→7FJ of Eu3+, the main emission peaks at 612 nm and the intensity is increased linearly with the increase of H3BO3 content. Phosphors show better afterglow characteristics during the increase of H3BO3.The measurement of thermoluminescence(TL) reveals that the addition of H3BO3 increases the trap depth and trap concentration in the host, hence the afterglow characteristics become better.
    • 基金项目: 国家自然科学基金(批准号:21271048,11304276)和广东省教育厅高校优秀青年创新人才培育项目(批准号:LYM11089)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21271048, 11304276), and the Distinguished Young Talents in higher Education of Guangdong (Grant No. LYM11089).
    [1]

    Pan Z W, Lu Y Y, Liu F 2012 Nature Mater. 11 58

    [2]

    Liang Z Q, Zhang J S, Sun J S, Li X P, Cheng L H, Zhong H Y, Fu S B, Tian Y, Chen B J 2013 Physica B 412 36

    [3]

    Liu Z R, Zhong R X 2013 J. Alloy Compd. 556 6

    [4]

    Wei D L, Qin L, Huang Y L, Seo H J 2013 Ceram. Int. 39 2383

    [5]

    Wang Z J, Li P L, Wang G, Yang Z P, Guo Q L, 2008, Acta Phys. Sin. 57 4575 (in Chinese) [王志军, 李盼来, 王刚, 杨志平, 郭庆林 2008 物理学报 57 4575]

    [6]

    Dou X H, Zhao W R, Song E H, Zhou G X, Yi C Y, Zhou M K 2011 Spectrochimica Acta Part A 78 821

    [7]

    Qi Y, Lian S X, Yu L P, Zhou W, Yin D L 2009 Chinese Journal of Inorganic Chemistry 25 218 (in Chinese) [祁媛, 廉世勋, 余丽萍, 周文, 尹笃林 2009 无机化学学报 25 218]

    [8]

    Xie W, Wang Y H, Hu Y H, Luo L, Wu H Y, Deng L Y 2010 Acta Phys. Sin. 59 3344 (in Chinese) [谢伟, 王银海, 胡义华, 罗莉, 吴浩怡, 邓柳咏 2010 物理学报 59 3344]

    [9]

    Ji T K, Jiang H Y, Chen F 2010 J. Alloy Compd. 502 180

    [10]

    Ma M X, Zhu D C, Tu M J 2009 Acta Phys. Sin. 58 6512 (in Chinese) [马明星, 朱达川, 涂铭旌 2009 物理学报 58 6512]

    [11]

    Xue H W, Cui C E, Hao H Z, Huang P 2010 Jounal of Functional Materials and Devices 16 81 (in Chinese) [薛红伟, 崔彩娥, 郝虎在, 黄平 2010 功能材料与器件学报 16 81]

    [12]

    Wang Z J, Li P L, Yang Z P, Guo Q L 2013 Chin. Phys. B 22 047804

    [13]

    Nakamura A, Nambu N, Saitoh H 2005 Science and Technology of Advanced Materials 6 210

    [14]

    Wang C N, Zhang W P, Yin M 2009 J. Alloy Compd. 474 180

    [15]

    Ferrari J L, Pires A M, Davolos M R 2009 Materials Chemistry and Physics 113 587

    [16]

    Xie W, Wang Y H, Hu Y H, Zhang J, Zou C W, Li D, Shao L X 2011 Acta Phys. Sin. 60 067801 (in Chinese) [谢伟, 王银海, 胡义华, 张军, 邹长伟, 李达, 邵乐喜 2011 物理学报 60 067801]

    [17]

    Katsumata T, Toyomane S, Tonegawa A, Kanai Y, Kaneyama U 2002 Journal of Crystal Growth 361 237

    [18]

    Zhang C X, Tang Q, Luo D L 2002 Acta Phys. Sin. 51 2881 (in Chinese) [张纯祥, 唐强, 罗达玲 2002 物理学报 51 2881]

    [19]

    McKeever S W S, Thermoluminescence of Solids. 1985 (Cambridge University Press) p99

    [20]

    Shalgaonkar C S, Narlikar A V 1972 Journal of Materials Science 7 1465

  • [1]

    Pan Z W, Lu Y Y, Liu F 2012 Nature Mater. 11 58

    [2]

    Liang Z Q, Zhang J S, Sun J S, Li X P, Cheng L H, Zhong H Y, Fu S B, Tian Y, Chen B J 2013 Physica B 412 36

    [3]

    Liu Z R, Zhong R X 2013 J. Alloy Compd. 556 6

    [4]

    Wei D L, Qin L, Huang Y L, Seo H J 2013 Ceram. Int. 39 2383

    [5]

    Wang Z J, Li P L, Wang G, Yang Z P, Guo Q L, 2008, Acta Phys. Sin. 57 4575 (in Chinese) [王志军, 李盼来, 王刚, 杨志平, 郭庆林 2008 物理学报 57 4575]

    [6]

    Dou X H, Zhao W R, Song E H, Zhou G X, Yi C Y, Zhou M K 2011 Spectrochimica Acta Part A 78 821

    [7]

    Qi Y, Lian S X, Yu L P, Zhou W, Yin D L 2009 Chinese Journal of Inorganic Chemistry 25 218 (in Chinese) [祁媛, 廉世勋, 余丽萍, 周文, 尹笃林 2009 无机化学学报 25 218]

    [8]

    Xie W, Wang Y H, Hu Y H, Luo L, Wu H Y, Deng L Y 2010 Acta Phys. Sin. 59 3344 (in Chinese) [谢伟, 王银海, 胡义华, 罗莉, 吴浩怡, 邓柳咏 2010 物理学报 59 3344]

    [9]

    Ji T K, Jiang H Y, Chen F 2010 J. Alloy Compd. 502 180

    [10]

    Ma M X, Zhu D C, Tu M J 2009 Acta Phys. Sin. 58 6512 (in Chinese) [马明星, 朱达川, 涂铭旌 2009 物理学报 58 6512]

    [11]

    Xue H W, Cui C E, Hao H Z, Huang P 2010 Jounal of Functional Materials and Devices 16 81 (in Chinese) [薛红伟, 崔彩娥, 郝虎在, 黄平 2010 功能材料与器件学报 16 81]

    [12]

    Wang Z J, Li P L, Yang Z P, Guo Q L 2013 Chin. Phys. B 22 047804

    [13]

    Nakamura A, Nambu N, Saitoh H 2005 Science and Technology of Advanced Materials 6 210

    [14]

    Wang C N, Zhang W P, Yin M 2009 J. Alloy Compd. 474 180

    [15]

    Ferrari J L, Pires A M, Davolos M R 2009 Materials Chemistry and Physics 113 587

    [16]

    Xie W, Wang Y H, Hu Y H, Zhang J, Zou C W, Li D, Shao L X 2011 Acta Phys. Sin. 60 067801 (in Chinese) [谢伟, 王银海, 胡义华, 张军, 邹长伟, 李达, 邵乐喜 2011 物理学报 60 067801]

    [17]

    Katsumata T, Toyomane S, Tonegawa A, Kanai Y, Kaneyama U 2002 Journal of Crystal Growth 361 237

    [18]

    Zhang C X, Tang Q, Luo D L 2002 Acta Phys. Sin. 51 2881 (in Chinese) [张纯祥, 唐强, 罗达玲 2002 物理学报 51 2881]

    [19]

    McKeever S W S, Thermoluminescence of Solids. 1985 (Cambridge University Press) p99

    [20]

    Shalgaonkar C S, Narlikar A V 1972 Journal of Materials Science 7 1465

计量
  • 文章访问数:  2018
  • PDF下载量:  399
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-12
  • 修回日期:  2013-09-27
  • 刊出日期:  2014-01-05

H3BO3对Y1.98O3:Eu0.01, Dy0.01红色长余辉发光材料结构和余辉性能的影响

  • 1. 湛江师范学院化学与材料研究中心, 湛江 524048;
  • 2. 广东工业大学物理与光电工程学院, 广州 510006
    基金项目: 

    国家自然科学基金(批准号:21271048,11304276)和广东省教育厅高校优秀青年创新人才培育项目(批准号:LYM11089)资助的课题.

摘要: 采用高温固相法制备了发光样品Y1.98O3:Eu0.013+,Dy0.013+. 采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、荧光光谱仪、单光子计数器测试了不同含量的H3BO3对Y1.98O3:Eu0.013+,Dy0.013+物相结构、颗粒形貌、发光性能、余辉性能的影响. 结果表明当H3BO3含量低于8%(mol)时,样品可保持Y2O3晶格结构,且样品颗粒随H3BO3的含量增加逐渐增大. 样品光致发光由Eu3+离子电子的5D0→7FJ 跃迁所致,主峰位于612 nm,且发光强度随H3BO3 含量的增加呈线性增强. 随着H3BO3 含量的增加,样品余辉衰减时间逐渐增加,热释光谱分析表明H3BO3 的加入增加了基质陷阱能级的深度与浓度,故而导致样品长余辉性能的变化.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回