搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模态信息非完备采样对水下声源检测的影响及改进方法

李明杨 孙超 邵炫

引用本文:
Citation:

模态信息非完备采样对水下声源检测的影响及改进方法

李明杨, 孙超, 邵炫

Effects of incomplete modal sampling on the underwater target detetion and performance improvement method

Li Ming-Yang, Sun Chao, Shao Xuan
PDF
导出引用
  • 给出了海洋波导中位置未知简谐声源的广义似然比检测器及其理论检测性能. 通过对检测器中模态相关矩阵进行特征值分解,将该检测器分解为与各阶特征值相对应的谱成分. 推导了各阶谱成分的统计特性并以此获得了谱成分对输入信号的空间处理增益,该增益与谱成分对应的特征值成正比. 当模态信息采样不完备时,模态相关矩阵存在部分接近于0的小特征值,相应的谱成分对输入信号的空间处理增益与其余谱成分相比非常小. 通过舍去这部分谱成分,提出了有效谱检测器. 该检测器在保持其输出中目标信号成分与广义似然比检测器相同的基础上,有效减少了其中的噪声成分,因此,具有比广义似然比检测器更好的检测性能. 在典型的浅海环境下进行仿真实验,仿真结果验证了理论分析、推导以及有效谱检测器的有效性,并且表明非完备采样程度越严重,有效谱检测器相对于广义似然比检测器的检测性能提高越显著. 此外,有效谱检测器具有比广义似然比检测器更好的数值计算稳健性.
    The generalized likelihood ratio test (GLRT) detector and its theoretical detection performance for an underwater narrowband source with an unknown position are both given in this paper. Via the eigenvalue decomposition of the mode correlation matrix (MCM), the GLRT detector is decomposed into different spectrum components corresponding to the eigenvalues of the MCM. Based on the derived statistical property of each component, the spatial processing gain of each spectrum component with respect to the input signal is obtained, which is proportional to the corresponding eigenvalue. As there are several eigenvalues of the MCM approaching to zero when the modal information is incompletely sampled, the components corresponding to these small eigenvalues contribute much less spatial processing gain to the input signal than other components. By discarding the components corresponding to these small eigenvalues, the effective spectrum detector (ESD) is proposed, of which the target signal component in the output is approximately identical to that of the GLRT detector, and the noise in the ESD output is much less. Therefore, a much more robust detection performance is obtained by ESD than by the GLRT detector. Numerical simulations in a typical shallow water environment demonstrate that 1) the theoretical analyses, derivations and the effectiveness of the proposed ESD are verified; 2) the more incomplete the modal information sampling is, the more significant performance improvement of ESD over the GLRT detector can be acquired; 3) the numerical stability of the ESD is better than that of the GLRT detector.
    • 基金项目: 国家自然科学基金(批准号:11274252,51479169)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274252, 51479169).
    [1]

    Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York: Springer) pp258-261

    [2]

    Wang N, Liu J Z 2002 Chin. Phys. 11 456

    [3]
    [4]

    Shang E C 1985 J. Acoust. Soc. Am. 77 1413

    [5]
    [6]
    [7]

    Shang E C, Clay C S, Wang Y Y 1985 J. Acoust. Soc. Am 78 172

    [8]

    Wilson G R, Koch R A, Vidmar P J 1988 J. Acoust. Soc. Am. 84 310

    [9]
    [10]
    [11]

    Buck J R, Preisig J C, Wage K E 1998 J. Acoust. Soc. Am. 103 1813

    [12]

    Yang T C 1987 J. Acoust. Soc. Am. 82 1736

    [13]
    [14]

    Collison N E, Dosso S E 2000 J. Acoust. Soc. Am. 107 3089

    [15]
    [16]
    [17]

    Yi F, Sun C 2013 Acta Acust. 38 35 (in Chinese) [易锋, 孙超 2013 声学学报 38 35]

    [18]
    [19]

    Sha L, Nolte L W 2005 J. Acoust. Soc. Am. 117 1942

    [20]
    [21]

    Liu Z W, Sun C, Du J Y 2013 Acta Phys. Sin. 62 064303 (in Chinese) [刘宗伟, 孙超, 杜金燕 2013 物理学报 62 064303]

    [22]

    Liu Z W 2013 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [刘宗伟 2013 博士学位论文 (西安: 西北工业大学) ]

    [23]
    [24]
    [25]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401

    [26]
    [27]

    Wang Z J 2003 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [王振杰 2003博士学位论文 (北京: 中国科学院研究生院)]

    [28]

    Ou J K 2004 Acta Geodaet. Cartograph. Sin. 33 283 (in Chinese) [欧吉坤 2004 测绘学报 33 283]

    [29]
    [30]

    Yang W C 1989 Geophysical Inversion and Seismic Tomography (Beijing: Geology Press) pp78-112 (in Chinese) [杨文采 1989 地球物理反演和地震层析成像 (北京: 地质出版社) 第78112页]

    [31]
    [32]
    [33]

    Xu P L 1998 Geophys. J. Int. 135 505

    [34]

    Kay S M 1998 Fundamentals of Statistical Signal Processing Volume II: Detection Theory (New Jersey: Prentice Hall) pp499-501

    [35]
    [36]
    [37]

    Neilsen T B, Westwood E K 2002 J. Acoust. Soc. Am. 111 748

    [38]
    [39]

    Kay S M 2013 IEEE Sign. Process. Lett. 20 619

    [40]

    Zhang X D 2004 Matrix Analysis and Applications (Beijing: Tsinghua University Press) p453 (in Chinese) [张贤达 2004 矩阵分析与应用 (北京: 清华大学出版社) 第453页]

    [41]
    [42]
    [43]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia. Italy: SACLANT Undersea Research Centre)

  • [1]

    Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York: Springer) pp258-261

    [2]

    Wang N, Liu J Z 2002 Chin. Phys. 11 456

    [3]
    [4]

    Shang E C 1985 J. Acoust. Soc. Am. 77 1413

    [5]
    [6]
    [7]

    Shang E C, Clay C S, Wang Y Y 1985 J. Acoust. Soc. Am 78 172

    [8]

    Wilson G R, Koch R A, Vidmar P J 1988 J. Acoust. Soc. Am. 84 310

    [9]
    [10]
    [11]

    Buck J R, Preisig J C, Wage K E 1998 J. Acoust. Soc. Am. 103 1813

    [12]

    Yang T C 1987 J. Acoust. Soc. Am. 82 1736

    [13]
    [14]

    Collison N E, Dosso S E 2000 J. Acoust. Soc. Am. 107 3089

    [15]
    [16]
    [17]

    Yi F, Sun C 2013 Acta Acust. 38 35 (in Chinese) [易锋, 孙超 2013 声学学报 38 35]

    [18]
    [19]

    Sha L, Nolte L W 2005 J. Acoust. Soc. Am. 117 1942

    [20]
    [21]

    Liu Z W, Sun C, Du J Y 2013 Acta Phys. Sin. 62 064303 (in Chinese) [刘宗伟, 孙超, 杜金燕 2013 物理学报 62 064303]

    [22]

    Liu Z W 2013 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [刘宗伟 2013 博士学位论文 (西安: 西北工业大学) ]

    [23]
    [24]
    [25]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401

    [26]
    [27]

    Wang Z J 2003 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [王振杰 2003博士学位论文 (北京: 中国科学院研究生院)]

    [28]

    Ou J K 2004 Acta Geodaet. Cartograph. Sin. 33 283 (in Chinese) [欧吉坤 2004 测绘学报 33 283]

    [29]
    [30]

    Yang W C 1989 Geophysical Inversion and Seismic Tomography (Beijing: Geology Press) pp78-112 (in Chinese) [杨文采 1989 地球物理反演和地震层析成像 (北京: 地质出版社) 第78112页]

    [31]
    [32]
    [33]

    Xu P L 1998 Geophys. J. Int. 135 505

    [34]

    Kay S M 1998 Fundamentals of Statistical Signal Processing Volume II: Detection Theory (New Jersey: Prentice Hall) pp499-501

    [35]
    [36]
    [37]

    Neilsen T B, Westwood E K 2002 J. Acoust. Soc. Am. 111 748

    [38]
    [39]

    Kay S M 2013 IEEE Sign. Process. Lett. 20 619

    [40]

    Zhang X D 2004 Matrix Analysis and Applications (Beijing: Tsinghua University Press) p453 (in Chinese) [张贤达 2004 矩阵分析与应用 (北京: 清华大学出版社) 第453页]

    [41]
    [42]
    [43]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia. Italy: SACLANT Undersea Research Centre)

  • [1] 孔德智, 孙超, 李明杨, 卓颉, 刘雄厚. 深海波导中基于采样简正波模态降维处理的广义似然比检测. 物理学报, 2019, 68(17): 174301. doi: 10.7498/aps.68.20190700
    [2] 孙娟, 李晓霞, 张金浩, 申玉卓, 李艳雨. 多层单向耦合星形网络的特征值谱及同步能力分析. 物理学报, 2017, 66(18): 188901. doi: 10.7498/aps.66.188901
    [3] 焦宝宝. 用重正交化Lanczos法求解大型非正交归一基稀疏矩阵的特征值问题. 物理学报, 2016, 65(19): 192101. doi: 10.7498/aps.65.192101
    [4] 徐明明, 陆君安, 周进. 两层星形网络的特征值谱及同步能力. 物理学报, 2016, 65(2): 028902. doi: 10.7498/aps.65.028902
    [5] 许松, 唐晓明, 苏远大. 横向各向同性固体材料中含定向非均匀体的有效弹性模量. 物理学报, 2015, 64(20): 206201. doi: 10.7498/aps.64.206201
    [6] 张宏, 丁炯, 童勤业, 程千流. 双耳幅值差确定声源方向的神经信息处理机理研究. 物理学报, 2015, 64(18): 188701. doi: 10.7498/aps.64.188701
    [7] 宋永佳, 胡恒山. 含定向非均匀体固体材料的横观各向同性有效弹性模量. 物理学报, 2014, 63(1): 016202. doi: 10.7498/aps.63.016202
    [8] 徐岩, 樊炜, 冀彦君, 宋仁刚, 陈兵, 赵振华, 陈达. 非相对论弱相互作用玻色气体的有效场理论处理. 物理学报, 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [9] 郝本建, 李赞, 万鹏武, 司江勃. 传感器网络基于特征值分解的信号被动定位技术. 物理学报, 2014, 63(5): 054304. doi: 10.7498/aps.63.054304
    [10] 钟时, 杨修群, 郭维栋. 局地零平面位移对非均匀地表有效空气动力学参数的影响. 物理学报, 2013, 62(14): 144212. doi: 10.7498/aps.62.144212
    [11] 黄瑾, 钟中, 郭维栋, 卢伟. 非均匀地表空气动力学有效粗糙度的统计特征. 物理学报, 2013, 62(5): 054204. doi: 10.7498/aps.62.054204
    [12] 梁义, 王兴元. 基于低阶矩阵最大特征值的复杂网络牵制混沌同步. 物理学报, 2012, 61(3): 038901. doi: 10.7498/aps.61.038901
    [13] 黄永平, 赵光普, 肖希, 王藩侯. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径. 物理学报, 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [14] 何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟. 水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响. 物理学报, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [15] 刘谋斌, 常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法. 物理学报, 2010, 59(11): 7556-7563. doi: 10.7498/aps.59.7556
    [16] 袁都奇. 原子激射器的空间有效增益范围. 物理学报, 2010, 59(8): 5271-5275. doi: 10.7498/aps.59.5271
    [17] 杨翠云, 翁甲强, 刘海英, 刘 萍, 唐国宁, 方锦清. 以小区域内的离子数为控制信息实现束晕的有效控制. 物理学报, 2008, 57(11): 6883-6887. doi: 10.7498/aps.57.6883
    [18] 王安帮, 王云才, 郭文阁, 张首刚. 有效压缩增益开关DFB激光器光谱线宽的注入时间窗口. 物理学报, 2007, 56(1): 285-290. doi: 10.7498/aps.56.285
    [19] 方锦清, 高远, 翁甲强, 罗晓曙, 陈关荣. 小波函数反馈法实现对强流束晕混沌的有效控制. 物理学报, 2001, 50(3): 435-439. doi: 10.7498/aps.50.435
    [20] 马 晶, 谭立英, 冉启文. 小波分析在光学信息处理中的应用. 物理学报, 1999, 48(7): 1223-1229. doi: 10.7498/aps.48.1223
计量
  • 文章访问数:  5386
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-07
  • 修回日期:  2014-06-19
  • 刊出日期:  2014-10-05

/

返回文章
返回