搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光锡等离子体的状态参数分布和极紫外波段辐射的模拟研究

敏琦 王国栋 何朝伟 何思奇 卢海东 刘兴邦 武艳红 苏茂根 董晨钟

引用本文:
Citation:

激光锡等离子体的状态参数分布和极紫外波段辐射的模拟研究

敏琦, 王国栋, 何朝伟, 何思奇, 卢海东, 刘兴邦, 武艳红, 苏茂根, 董晨钟

Numerical study of the state parameter distributions and extreme ultraviolet radiation within the laser-produced tin plasma

Qi Min, Guodong Wang, Chaowei He, Siqi He, Haidong Lu, Xingbang Liu, Yanhong Wu, Maogen Su, Chenzhong Dong
PDF
导出引用
  • 激光锡(Sn)等离子体光源是当前先进极紫外(EUV)光刻机中最为核心的分系统,其辐射出的13.5 nm附近2%带宽内的EUV光的功率值和稳定性是决定整个光刻机是否成功的关键指标之一。本文针对激光Sn等离子体光源这一复杂系统,开展了详细的关于等离子体状态参数分布以及EUV辐射光谱的数值模拟研究。首先基于细致能级模型, 在局域热动平衡近似条件下计算得到了Sn等离子体在12 - 16 nm波段的辐射不透明度数据。随后利用激光等离子体辐射流体力学程序RHDLPP,分别模拟了纳秒激光脉冲作用于Sn平面固体靶和液滴靶所产生的等离子体的温度和电子密度等状态参数的分布。结合辐射不透明度数据和等离子体状态数据,利用光谱模拟后处理子程序SpeIma3D完成了平面靶等离子体的空间分辨EUV光谱以及液滴靶等离子体在60度观测角下的角分辨EUV光谱的模拟。最后,得到了液滴靶等离子体在13.5 nm,2%带宽内的带内辐射强度随观测角度的变化规律。本文获得的所有等离子体状态参数分布和EUV光谱模拟结果与现有的实验结果具有很好的一致性,证明了RHDLPP程序在激光Sn等离子体EUV光源方面的模拟能力,相关结果可以为EUV光刻以及国产化EUV光源的研制提供一定的支持。
    The laser-produced Sn plasma light source is a critical component in advanced extreme ultraviolet (EUV) lithography. One of the key metrics for evaluating the success of the entire lithography process is the power and stability of EUV radiation within a 2% bandwidth centered at 13.5 nm. This paper presents a detailed numerical simulation of plasma state parameter distributions and the EUV radiation spectrum for a laser-produced Sn plasma light source. The radiative opacity of Sn plasma within the 12-16 nm range is calculated using a detailed-level-accounting model under the local thermodynamic equilibrium approximation. Next, the temperature and electron density distributions of plasma generated by nanosecond laser pulses interacting with both a Sn planar solid target and a liquid droplet target are simulated using the radiation hydrodynamics code for laser-produced plasma, RHDLPP. By combining the radiative opacity data with the plasma state data, the spectral simulation subroutine SpeIma3D is employed to model the spatially resolved EUV spectra for the planar target plasma and the angularly resolved EUV spectra for the droplet target plasma at a 60-degree observation angle. The variation of in-band radiation intensity at 13.5 nm within the 2% bandwidth as a function of observation angle is also analyzed for the droplet-target plasma. The simulated plasma state parameter distributions and EUV spectral results closely match existing experimental data, demonstrating the RHDLPP code's capability in modeling laser-produced Sn plasma EUV light sources. These findings provide valuable support for the advancement of EUV lithography and the development of localized EUV light sources.
  • [1]

    Bakshi V 2023 Photon sources for lithography and metrology (Washington: SPIE Press)

    [2]

    Bakshi V 2018 EUV lithography, 2nd editor. (Washington: SPIE Press)

    [3]

    Lin N, Yang W H, Chen Y Y, Wei X, Wang C, Zhao J L, Peng Y J, Leng X Y 2022 Laser & Optoelectronics Progress. 59 0922002 (in Chinese) [林楠,杨文河,陈韫懿,魏鑫,王成,赵娇玲,彭宇杰,冷雨欣2022 激光与光电子学进展 59 0922002]

    [4]

    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001

    [5]

    Versolato O O, Sheil J, Witte S, Ubachs W, Hoekstra R 2021 J. Opt. 24 054014

    [6]

    Behnke L, Schupp R, Bouza Z, Bayraktar M, Mazzotta Z, Meijer R, Sheil j, Witte S, Ubachs W Hoekstra R, Versolato O O 2021 Opt. Express. 29 4475

    [7]

    Schupp R, Behnke L, Sheil J, Bouza Z, Bayraktar M, Ubachs W, Hoekstra R, Versolato O O 2021 Phys. Rev. Res. 3 013294

    [8]

    Schupp R, Behnke L, Bouza Z, MazzottaZ, Mostafa Y, Lassise A, Poirier L, Sheil J, Bayraktar M, Ubachs W 2021 J. Phys. D:Appl. Phys. 54 365103

    [9]

    Hemminga D J, Versolato O O, Sheil J 2023 Phys. Plasmas. 30 033301

    [10]

    Hernandez-Rueda J, Liu B, Hemminga D J, Mostafa Y, Meijer R A, Kurilovich D, Basko M, Gelderblom H, Sheil J, Versolato O Oet 2022 Phys. Rev. Res. 4 013142

    [11]

    Meijer R A, Kurilovich D, Eikema K S E, Versolato O O, Witte S 2022, J. Appl. Phys. 131 105905

    [12]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Comm. 11 2334

    [13]

    Sheil J, Versolato O O, Neukirch A J, Colgan J 2021 J. Phys. B: At. Mol. Opt. Phys. 54 035002

    [14]

    Gao C, Liu Y P, Yan G P, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin 72, 183101 (in Chinese) [高城,刘彦鹏,严冠鹏,闫杰,陈小棋,侯永,靳奉涛,吴建华,曾交龙,袁建民 2023 物理学报 72 183101]

    [15]

    Colgan J, Kilcrease D P, Abdallah Jr J, Sherrill M E, Fontes C J, Hakel P, Armstrong G S J 2017 High Energy Density Phys. 23 133

    [16]

    Sasaki A 2024 Appl. Phys. Lett. 124 064104

    [17]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004

    [18]

    Pan Y, Tomita K, Sunahara A, Sasaki A, Nishihara K 2023 Appl. Phys. Lett. 123 204103

    [19]

    Su M G, Min Q, Cao S Q, Sun D X, Hayden P, O’Sullivan G, Dong C Z 2017, Sci. Rep. 7 45212

    [20]

    Basko M M, Sasorov P V, Murakami M, Novikov V G, Grushin A S 2012 Plasma Phys. Control. Fusion. 54 055003

    [21]

    Nishihara K, Sunahara A, Sasaki A, Nunami M, Tanuma H, Fujioka S, Shimada Y, Fujima K, Furukawa H, Kato T, Koike F, More R, Murakami M, Nishikawa T, Zhakhovskii V, Gamata K, Takata A, Ueda H, Nishikawa T, Lzawa Y, Miyanaga N, Mima K 2008 Phys. Plasmas. 15 056708

    [22]

    Sizyuk T, Hassanein A 2015 Physics of Plasmas. 22 093101

    [23]

    Koshelev K N, Ivanov V V, Noivkov V G, Medvedev V, Grushin A S, KrivtsunV M 2012 J. Micro/Nanolith. MEMS MOEMS. 11 021112

    [24]

    Min Q, Xu Z Y, He S Q, Lu H D, Liu X B, Shen R Z, Wu Y H, Pan Q K, Zhao C X, Chen F, Su M G, Dong C Z 2024 Computer Physics Communications. 302 109242

    [25]

    Castor J J 2004 Radiation Hydrodynamics (Cambridge: Cambridge University Press)

    [26]

    Morel J E 2000 J. Quant. Spectrosc. Radiat. Transf. 65 769

    [27]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids. 31 3059

    [28]

    Nikiforov A F, Novikov V G, Uvarov V B 2005 Quantum-Statistical Models of Hot Dense Matter and Methods for Computation Opacity and Equation of State (Basel: Birkhauser Verlag)

    [29]

    Heltemes T A, Moses G A 2012 Computer Phys. Commun. 183 2629

    [30]

    Faik S, Tauschwitz A, Iosilevskiy I 2018 Computer Phys. Commun. 227 117

    [31]

    Young D A, Corey E M 1995 J. Appl. Phys. 78 3748

    [32]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energ. Dens. Phys. 1 3

    [33]

    Min Q, Shen R Z, Su M G, Lu H D, He S Q, Liu X B, Li Y, Tao Q Q, Wu Y H, Sun D X, Cao S Q, Dong C Z 2022 J. Phys. D: Appl. Phys. 55 505205

    [34]

    Magee N H, Abdallah J, Jr., Clark R E H, Cohen J. S., Collins L A, Csanak G, Fontes C J, Gauger A, Keady J J, Kilcrease D P, Merts A L 1995 Astronomical Society of the Pacific Conference Series. 78 51

    [35]

    He S Q, Min Q, Wu Y H, Liu X B, He C W, Cao S Q, Pan Q K, Guo J, Chen F, Zhang D H, Su M G, Dong C Z 2024 Optics Express. 32 17088

    [36]

    Rodríguez R, Florido R, Gil JM, Rubiano JG, Martel P, Mínguez E 2008 Laser and Particle Beams. 26 3

    [37]

    Yan G P, Gao C, Hou Y, Jin F T, Li Y J, Zeng J L, Yuan J M 2024 Phys. Plasmas 31 093303

    [38]

    Macfarlane J J 1989 Computer Physics Communications. 56 2

    [39]

    Busquet M 1993 Physics of Fluids B: Plasma Physics. 5 11

    [40]

    Busquet M, Colombant D, Klapisch M, Fyfe D, Gardner J 2009 High Energy Density Physics. 5 4

    [41]

    Sheil J, Versolato O O, Neukirch A J, Colgan J 2021 Journal of Physics B: Atomic, Molecular and Optical Physics. 54 3

    [42]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (California: University of California Press)

    [43]

    Schupp R, Torretti F, Meijer R A, Bayraktar M, Scheers J, Kurilovich D, Bayerle A, Eikema K S E, Witte S, Ubachs W, Hoekstra R, Versolato1 O O 2019 Physical Review Applied. 12 014010

  • [1] 王均武, 玄洪文, 俞航航, 王新兵, Vassily S. Zakharov. 激光诱导放电等离子体极紫外辐射的模拟. 物理学报, doi: 10.7498/aps.73.20231158
    [2] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制. 物理学报, doi: 10.7498/aps.73.20231377
    [3] 高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民. 局域热平衡Sn等离子体极紫外辐射不透明度和发射谱的理论研究. 物理学报, doi: 10.7498/aps.72.20230455
    [4] 司明奇, 温智琳, 张齐进, 窦银萍, 李博超, 宋晓伟, 谢卓, 林景全. 低密度SnO2靶激光等离子体极紫外光及离带热辐射. 物理学报, doi: 10.7498/aps.72.20222385
    [5] 雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁. 基于极紫外光的Ne, Xe原子电离. 物理学报, doi: 10.7498/aps.71.20220341
    [6] 谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射. 物理学报, doi: 10.7498/aps.71.20211450
    [7] 张文敏, 张凌, 程云鑫, 王正汹, 胡爱兰, 段艳敏, 周天富, 刘海庆. EAST等离子体Mo V-Mo XVIII极紫外光谱的识别. 物理学报, doi: 10.7498/aps.71.20212383
    [8] 谢卓, 温志琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射研究. 物理学报, doi: 10.7498/aps.70.20211450
    [9] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置. 物理学报, doi: 10.7498/aps.69.20201035
    [10] 唐蓉, 王国利, 李小勇, 周效信. 红外激光场中共振结构原子对极紫外光脉冲的压缩效应. 物理学报, doi: 10.7498/aps.65.103202
    [11] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究. 物理学报, doi: 10.7498/aps.64.133203
    [12] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, doi: 10.7498/aps.64.075202
    [13] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, doi: 10.7498/aps.62.024212
    [14] 赵永蓬, 徐强, 肖德龙, 丁宁, 谢耀, 李琦, 王骐. Xe介质极紫外光源时间特性及最佳条件研究. 物理学报, doi: 10.7498/aps.62.245204
    [15] 刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云. 离子速度成像系统校准及1,4-氯溴丁烷的紫外光解动力学. 物理学报, doi: 10.7498/aps.61.193301
    [16] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, doi: 10.7498/aps.57.5100
    [17] 苍 宇, 鲁 欣, 武慧春, 张 杰. 有质动力和静电分离场对激光等离子体流体力学状态的影响. 物理学报, doi: 10.7498/aps.54.812
    [18] 黄文忠, 何绍堂, 孔令华, 韩红军, 方泉玉, 陈国兴. 锗等离子体远紫外光谱研究. 物理学报, doi: 10.7498/aps.43.1066
    [19] 王文书, 李赞良, 黄矛. CT-6B托卡马克等离子体的真空紫外光谱. 物理学报, doi: 10.7498/aps.36.712
    [20] 王永昌, E. JANNITTI, G. TONDELLO. 对等离子体中谱线的斯塔克增宽的真空紫外光谱观测. 物理学报, doi: 10.7498/aps.34.1049
计量
  • 文章访问数:  53
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-23

/

返回文章
返回