-
激光锡(Sn)等离子体光源是当前先进极紫外(EUV)光刻机中最为核心的分系统,其辐射出的13.5 nm附近2%带宽内的EUV光的功率值和稳定性是决定整个光刻机是否成功的关键指标之一。本文针对激光Sn等离子体光源这一复杂系统,开展了详细的关于等离子体状态参数分布以及EUV辐射光谱的数值模拟研究。首先基于细致能级模型, 在局域热动平衡近似条件下计算得到了Sn等离子体在12 - 16 nm波段的辐射不透明度数据。随后利用激光等离子体辐射流体力学程序RHDLPP,分别模拟了纳秒激光脉冲作用于Sn平面固体靶和液滴靶所产生的等离子体的温度和电子密度等状态参数的分布。结合辐射不透明度数据和等离子体状态数据,利用光谱模拟后处理子程序SpeIma3D完成了平面靶等离子体的空间分辨EUV光谱以及液滴靶等离子体在60度观测角下的角分辨EUV光谱的模拟。最后,得到了液滴靶等离子体在13.5 nm,2%带宽内的带内辐射强度随观测角度的变化规律。本文获得的所有等离子体状态参数分布和EUV光谱模拟结果与现有的实验结果具有很好的一致性,证明了RHDLPP程序在激光Sn等离子体EUV光源方面的模拟能力,相关结果可以为EUV光刻以及国产化EUV光源的研制提供一定的支持。The laser-produced Sn plasma light source is a critical component in advanced extreme ultraviolet (EUV) lithography. One of the key metrics for evaluating the success of the entire lithography process is the power and stability of EUV radiation within a 2% bandwidth centered at 13.5 nm. This paper presents a detailed numerical simulation of plasma state parameter distributions and the EUV radiation spectrum for a laser-produced Sn plasma light source. The radiative opacity of Sn plasma within the 12-16 nm range is calculated using a detailed-level-accounting model under the local thermodynamic equilibrium approximation. Next, the temperature and electron density distributions of plasma generated by nanosecond laser pulses interacting with both a Sn planar solid target and a liquid droplet target are simulated using the radiation hydrodynamics code for laser-produced plasma, RHDLPP. By combining the radiative opacity data with the plasma state data, the spectral simulation subroutine SpeIma3D is employed to model the spatially resolved EUV spectra for the planar target plasma and the angularly resolved EUV spectra for the droplet target plasma at a 60-degree observation angle. The variation of in-band radiation intensity at 13.5 nm within the 2% bandwidth as a function of observation angle is also analyzed for the droplet-target plasma. The simulated plasma state parameter distributions and EUV spectral results closely match existing experimental data, demonstrating the RHDLPP code's capability in modeling laser-produced Sn plasma EUV light sources. These findings provide valuable support for the advancement of EUV lithography and the development of localized EUV light sources.
-
Keywords:
- extreme ultraviolet lithography light source /
- laser-produced tin plasma /
- radiation hydrodynamics code /
- extreme ultraviolet spectra
-
[1] Bakshi V 2023 Photon sources for lithography and metrology (Washington: SPIE Press)
[2] Bakshi V 2018 EUV lithography, 2nd editor. (Washington: SPIE Press)
[3] Lin N, Yang W H, Chen Y Y, Wei X, Wang C, Zhao J L, Peng Y J, Leng X Y 2022 Laser & Optoelectronics Progress. 59 0922002 (in Chinese) [林楠,杨文河,陈韫懿,魏鑫,王成,赵娇玲,彭宇杰,冷雨欣2022 激光与光电子学进展 59 0922002]
[4] Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001
[5] Versolato O O, Sheil J, Witte S, Ubachs W, Hoekstra R 2021 J. Opt. 24 054014
[6] Behnke L, Schupp R, Bouza Z, Bayraktar M, Mazzotta Z, Meijer R, Sheil j, Witte S, Ubachs W Hoekstra R, Versolato O O 2021 Opt. Express. 29 4475
[7] Schupp R, Behnke L, Sheil J, Bouza Z, Bayraktar M, Ubachs W, Hoekstra R, Versolato O O 2021 Phys. Rev. Res. 3 013294
[8] Schupp R, Behnke L, Bouza Z, MazzottaZ, Mostafa Y, Lassise A, Poirier L, Sheil J, Bayraktar M, Ubachs W 2021 J. Phys. D:Appl. Phys. 54 365103
[9] Hemminga D J, Versolato O O, Sheil J 2023 Phys. Plasmas. 30 033301
[10] Hernandez-Rueda J, Liu B, Hemminga D J, Mostafa Y, Meijer R A, Kurilovich D, Basko M, Gelderblom H, Sheil J, Versolato O Oet 2022 Phys. Rev. Res. 4 013142
[11] Meijer R A, Kurilovich D, Eikema K S E, Versolato O O, Witte S 2022, J. Appl. Phys. 131 105905
[12] Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Comm. 11 2334
[13] Sheil J, Versolato O O, Neukirch A J, Colgan J 2021 J. Phys. B: At. Mol. Opt. Phys. 54 035002
[14] Gao C, Liu Y P, Yan G P, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin 72, 183101 (in Chinese) [高城,刘彦鹏,严冠鹏,闫杰,陈小棋,侯永,靳奉涛,吴建华,曾交龙,袁建民 2023 物理学报 72 183101]
[15] Colgan J, Kilcrease D P, Abdallah Jr J, Sherrill M E, Fontes C J, Hakel P, Armstrong G S J 2017 High Energy Density Phys. 23 133
[16] Sasaki A 2024 Appl. Phys. Lett. 124 064104
[17] Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004
[18] Pan Y, Tomita K, Sunahara A, Sasaki A, Nishihara K 2023 Appl. Phys. Lett. 123 204103
[19] Su M G, Min Q, Cao S Q, Sun D X, Hayden P, O’Sullivan G, Dong C Z 2017, Sci. Rep. 7 45212
[20] Basko M M, Sasorov P V, Murakami M, Novikov V G, Grushin A S 2012 Plasma Phys. Control. Fusion. 54 055003
[21] Nishihara K, Sunahara A, Sasaki A, Nunami M, Tanuma H, Fujioka S, Shimada Y, Fujima K, Furukawa H, Kato T, Koike F, More R, Murakami M, Nishikawa T, Zhakhovskii V, Gamata K, Takata A, Ueda H, Nishikawa T, Lzawa Y, Miyanaga N, Mima K 2008 Phys. Plasmas. 15 056708
[22] Sizyuk T, Hassanein A 2015 Physics of Plasmas. 22 093101
[23] Koshelev K N, Ivanov V V, Noivkov V G, Medvedev V, Grushin A S, KrivtsunV M 2012 J. Micro/Nanolith. MEMS MOEMS. 11 021112
[24] Min Q, Xu Z Y, He S Q, Lu H D, Liu X B, Shen R Z, Wu Y H, Pan Q K, Zhao C X, Chen F, Su M G, Dong C Z 2024 Computer Physics Communications. 302 109242
[25] Castor J J 2004 Radiation Hydrodynamics (Cambridge: Cambridge University Press)
[26] Morel J E 2000 J. Quant. Spectrosc. Radiat. Transf. 65 769
[27] More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids. 31 3059
[28] Nikiforov A F, Novikov V G, Uvarov V B 2005 Quantum-Statistical Models of Hot Dense Matter and Methods for Computation Opacity and Equation of State (Basel: Birkhauser Verlag)
[29] Heltemes T A, Moses G A 2012 Computer Phys. Commun. 183 2629
[30] Faik S, Tauschwitz A, Iosilevskiy I 2018 Computer Phys. Commun. 227 117
[31] Young D A, Corey E M 1995 J. Appl. Phys. 78 3748
[32] Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energ. Dens. Phys. 1 3
[33] Min Q, Shen R Z, Su M G, Lu H D, He S Q, Liu X B, Li Y, Tao Q Q, Wu Y H, Sun D X, Cao S Q, Dong C Z 2022 J. Phys. D: Appl. Phys. 55 505205
[34] Magee N H, Abdallah J, Jr., Clark R E H, Cohen J. S., Collins L A, Csanak G, Fontes C J, Gauger A, Keady J J, Kilcrease D P, Merts A L 1995 Astronomical Society of the Pacific Conference Series. 78 51
[35] He S Q, Min Q, Wu Y H, Liu X B, He C W, Cao S Q, Pan Q K, Guo J, Chen F, Zhang D H, Su M G, Dong C Z 2024 Optics Express. 32 17088
[36] Rodríguez R, Florido R, Gil JM, Rubiano JG, Martel P, Mínguez E 2008 Laser and Particle Beams. 26 3
[37] Yan G P, Gao C, Hou Y, Jin F T, Li Y J, Zeng J L, Yuan J M 2024 Phys. Plasmas 31 093303
[38] Macfarlane J J 1989 Computer Physics Communications. 56 2
[39] Busquet M 1993 Physics of Fluids B: Plasma Physics. 5 11
[40] Busquet M, Colombant D, Klapisch M, Fyfe D, Gardner J 2009 High Energy Density Physics. 5 4
[41] Sheil J, Versolato O O, Neukirch A J, Colgan J 2021 Journal of Physics B: Atomic, Molecular and Optical Physics. 54 3
[42] Cowan R D 1981 The Theory of Atomic Structure and Spectra (California: University of California Press)
[43] Schupp R, Torretti F, Meijer R A, Bayraktar M, Scheers J, Kurilovich D, Bayerle A, Eikema K S E, Witte S, Ubachs W, Hoekstra R, Versolato1 O O 2019 Physical Review Applied. 12 014010
计量
- 文章访问数: 53
- PDF下载量: 3
- 被引次数: 0