搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光诱导分子准直相干性的度量分析

廉振中 洪倩倩 贾利娟 孟建桥 束传存

引用本文:
Citation:

飞秒激光诱导分子准直相干性的度量分析

廉振中, 洪倩倩, 贾利娟, 孟建桥, 束传存
cstr: 32037.14.aps.74.20241400

Measurement analysis of coherence in femtosecond laser-induced molecular alignment

LIAN Zhenzhong, HONG Qianqian, JIA Lijuan, MENG Jianqiao, SHU Chuancun
cstr: 32037.14.aps.74.20241400
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文探讨了有限温度下, 飞秒激光脉冲诱导的分子准直现象中内在相干性度量与其准直信号之间的定量关系. 针对超快非共振激光脉冲诱导分子准直问题, 推导了转动体系$l_1 $范数相干性度量($C_{l_1}(\rho)$即密度矩阵ρ中所有非对角元素绝对值之和)与准直幅度(准直度最大值与最小值之差)之比与电场强度之间存在的定量关系, 并通过对CO分子的数值模拟进行了验证. 在此基础上, 进一步给出了这一比值与脉冲强度面积之间的映射关系. 本文的研究结果为实验中探测转动体系的相干性度量提供了新的思路, 并为利用分子转动态进行相干性度量研究奠定了理论基础, 有利于促进超快强场物理与量子信息度量之间的交叉融合.
    Femtosecond laser-induced excitation of molecular rotational states can lead to phenomena such as alignment and orientation, which fundamentally stem from the coherence between the induced rotational states. In recent years, the quantitative study of coherence in the field of quantum information has received widespread attention. Different kinds of coherence measures have been proposed and investigated. In this work, the quantitative correlation is investigated in detail between the intrinsic coherence measurement and the degree of molecular alignment induced by femtosecond laser pulses at finite temperatures. By examining the molecular alignment induced by ultrafast non-resonant laser pulses, a quantitative relationship is established between the $l_1$ norm coherence measure $C_{l_1}(\rho)$ and the alignment amplitude ${\cal{D}}\langle \cos^2 \theta \rangle$. Here, $C_{l_1}(\rho)$ represents the sum of the absolute values of all off-diagonal elements of the density matrix ρ, ${\cal{D}}\langle \cos^2 \theta \rangle$ represents the difference between the maximum alignment and the minimum alignment. A quadratic relationship $ C_{l_1} = (a + b{\cal{E}}^2_0)\times $$ {\cal{D}}\langle \cos^2 \theta \rangle$ between the the $l_1$ norm coherence measure and ${\cal{D}}\langle \cos^2 \theta \rangle$ with respect to the electric field intensity ${\cal{E}}_0$ is obtained. This relationship is validated through numerical simulations of the CO molecule, and the ratio coefficients a and b for different temperatures are obtained. Furthermore, a mapping relationship between this ratio and the pulse intensity area is established. The findings of this study provide an alternative method for experimentally detecting the coherence measure within femtosecond laser-excited rotational systems, thereby extending the potential applicability of molecular rotational states to the study of the coherence measure in the field of quantum resources. This will facilitate the interdisciplinary integration of ultrafast strong-field physics and quantum information.
      通信作者: 贾利娟, jialijuan@csu.edu.cn ; 束传存, cc.shu@csu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1604204)、国家自然科学基金(批准号: 12274470, 12304311)和湖南省杰出青年自然科学基金(批准号: 2022JJ10070)资助的课题.
      Corresponding author: JIA Lijuan, jialijuan@csu.edu.cn ; SHU Chuancun, cc.shu@csu.edu.cn
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2022YFA1604204), the National Natural Science Foundation of China (Grant Nos. 12274470, 12304311), and the Natural Science Foundation of Hunan Province for Distinguished Young Scholars, China (Grant No. 2022JJ10070).
    [1]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [2]

    Jia L, Xu L, Zhang P, Fu L 2021 New J. Phys. 23 113047Google Scholar

    [3]

    Jia L, Xing H, Fu L 2022 Phys. Rev. A 106 022814Google Scholar

    [4]

    Jia L, Jiang W C, Xing H, Fu L 2023 Phys. Rev. A 108 013119Google Scholar

    [5]

    Li X, Liu X, Wang C, Ben S, Zhou S, Yang Y, Song X, Chen J, Yang W, Ding D 2024 Light Sci. Appl. 13 250Google Scholar

    [6]

    Litvinyuk I V, Lee K F, Dooley P W, Rayner D M, Villeneuve D M, Corkum P B 2003 Phys. Rev. Lett. 90 233003Google Scholar

    [7]

    Li H, Ray D, De S, Znakovskaya I, Cao W, Laurent G, Wang Z, Kling M F, Le A T, Cocke C L 2011 Phys. Rev. A 84 043429Google Scholar

    [8]

    Ueno K, Mizuse K, Ohshima Y 2021 Phys. Rev. A 103 053104Google Scholar

    [9]

    Marvian I, Spekkens R W, Zanardi P 2016 Phys. Rev. A 93 052331Google Scholar

    [10]

    Morrigan L, Neville S P, Gregory M, Boguslavskiy A E, Forbes R, Wilkinson I, Lausten R, Stolow A, Schuurman M S, Hockett P, Makhija V 2023 Phys. Rev. Lett. 131 193001Google Scholar

    [11]

    Yang Y, Hu X, Wu L, Wang Z, Li X, Zhou S, Wang Z, Guo F, He L, Luo S, Zhang D, Wang J, Chen X, Wu Y, Wang C, Ding D 2024 Phys. Rev. Lett. 133 113203Google Scholar

    [12]

    罗嗣佐, 陈洲, 李孝开, 胡湛, 丁大军 2019 光学学报 39 0126007Google Scholar

    Luo S Z, Chen Z, Li X K, Hu Z, Ding D J 2019 Acta Opt. Sin. 39 0126007Google Scholar

    [13]

    Wang Z, Hu X, Xue X, et al. 2023 Nat. Commun. 14 5420Google Scholar

    [14]

    郑悦, 张宇璇, 孙少华, 丁鹏基, 胡碧涛, 刘作业 2023 物理学报 72 064203Google Scholar

    Zheng Y, Zhang Y X, Sun S H, Ding P J, Hu B T, Liu Z Y 2023 Acta Phys. Sin. 72 064203Google Scholar

    [15]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [16]

    Streltsov A, Adesso G, Plenio M B 2017 Rev. Mod. Phys. 89 041003Google Scholar

    [17]

    林银, 黄明达, 於亚飞, 张智明 2017 物理学报 66 110301Google Scholar

    Lin Y, Huang M D, Yu Y F, Zhang Z M 2017 Acta Phys. Sin. 66 110301Google Scholar

    [18]

    Vrakking M J J 2021 Phys. Rev. Lett. 126 113203Google Scholar

    [19]

    Nabekawa Y, Midorikawa K 2023 Phys. Rev. Res. 5 033083Google Scholar

    [20]

    Jiang W C, Zhong M C, Fang Y K, Donsa S, Březinová I, Peng L Y, Burgdörfer J 2024 Phys. Rev. Lett. 133 163201Google Scholar

    [21]

    Shu C C, Henriksen N E 2013 Phys. Rev. A 87 013408Google Scholar

    [22]

    Hong Q Q, Fan L B, Shu C C, Henriksen N E 2021 Phys. Rev. A 104 013108Google Scholar

    [23]

    Cheng Q Y, Song Y Z, Li D W, Liu Z P, Meng Q T 2022 Chin. Phys. B 31 103301Google Scholar

    [24]

    Lian Z, Luo S, Qi H, Chen Z, Shu C C, Hu Z 2023 Opt. Lett. 48 411Google Scholar

    [25]

    Hong Q Q, Lian Z Z, Shu C C, Henriksen N E 2023 Phys. Chem. Chem. Phys. 25 32763Google Scholar

    [26]

    Koch C P, Lemeshko M, Sugny D 2019 Rev. Mod. Phys. 91 035005Google Scholar

    [27]

    Trabattoni A, Wiese J, De Giovannini U, Olivieri J F, Mullins T, Onvlee J, Son S K, Frusteri B, Rubio A, Trippel S, Küpper J 2020 Nat. Commun. 11 2546Google Scholar

    [28]

    Sansone G, Kelkensberg F, Pérez-Torres J, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario L J, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov Y M, Nisoli M, Martín F, Vrakking M J J 2010 Nature 465 763Google Scholar

    [29]

    Kang H, Quan W, Wang Y, Lin Z, Wu M, Liu H, Liu X, Wang B B, Liu H J, Gu Y Q, Jia X Y, Liu J, Chen J, Cheng Y 2010 Phys. Rev. Lett. 104 203001Google Scholar

    [30]

    Li X, Liu Y, Zhang D, He L, Luo S, Shu C C, Ding D 2023 Phys. Rev. A 108 023114Google Scholar

    [31]

    Zhang W, Gong X, Li H, Lu P, Sun F, Ji Q, Lin K, Ma J, Li H, Qiang J, He F, Wu J 2019 Nat. Commun. 10 757Google Scholar

    [32]

    Lu P, Wang J, Li H, Lin K, Gong X, Song Q, Ji Q, Zhang W, Ma J, Li H, Zeng H, He F, Wu J 2018 Proc. Natl. Acad. Sci. 115 2049Google Scholar

    [33]

    Guo Z, Fang Y, Ge P, Yu X, Wang J, Han M, Gong Q, Liu Y 2021 Phys. Rev. A 104 L051101Google Scholar

    [34]

    Yu X, Zhang X, Hu X, Zhao X, Ren D, Li X, Ma P, Wang C, Wu Y, Luo S, Ding D 2022 Phys. Rev. Lett. 129 023001Google Scholar

    [35]

    McFarland B K, Farrell J P, Bucksbaum P H, Guhr M 2008 Science 322 1232Google Scholar

    [36]

    Chen Y J, Fu L B, Liu J 2013 Phys. Rev. Lett. 111 073902Google Scholar

    [37]

    Huang Y, Meng C, Wang X, Lü Z, Zhang D, Chen W, Zhao J, Yuan J, Zhao Z 2015 Phys. Rev. Lett. 115 123002Google Scholar

    [38]

    Zhai C, Wu Y, Qin L, Li X, Shi L, Zhang K, Kang S, Li Z, Li Y, Tang Q, Yu B 2023 Chin. Phys. B 32 073301Google Scholar

    [39]

    Kanai T, Minemoto S, Sakai H 2007 Phys. Rev. Lett. 98 053002Google Scholar

    [40]

    Lan P, Ruhmann M, He L, Zhai C, Wang F, Zhu X, Zhang Q, Zhou Y, Li M, Lein M, Lu P 2017 Phys. Rev. Lett. 119 033201Google Scholar

    [41]

    Shu C C, Hong Q Q, Guo Y, Henriksen N E 2020 Phys. Rev. A 102 063124Google Scholar

    [42]

    Lapert M, Hertz E, Guérin S, Sugny D 2009 Phys. Rev. A 80 051403Google Scholar

    [43]

    Hoque Z, Lapert M, Hertz E, Billard F, Sugny D, Lavorel B, Faucher O 2011 Phys. Rev. A 84 013409Google Scholar

    [44]

    Karras G, Hertz E, Billard F, Lavorel B, Faucher O, Gershnabel E, Prior Y 2015 Phys. Rev. Lett. 114 153601Google Scholar

    [45]

    Lin K, Lu P, Ma J, Gong X, Song Q, Ji Q, Zhang W, Zeng H, Wu J, Karras G, Siour G, Jean-Michel Hartmann, Faucher O, Gershnabel E, Prior Y, Averbukh I S 2016 Phys. Rev. X 6 041056Google Scholar

    [46]

    Wang B, He L, He Y, Zhang Y, Shao R, Lan P, Lu P 2019 Opt. Express 27 30172Google Scholar

    [47]

    Lian Z, Hu Z, Qi H, Fei D, Luo S, Chen Z, Shu C C 2021 Phys. Rev. A 104 053105Google Scholar

    [48]

    Lian Z, Chen Z, Li J, Shu C C, Hu Z 2023 Phys. Rev. A 108 063108Google Scholar

    [49]

    Lee K F, Villeneuve D M, Corkum P B, Shapiro E A 2004 Phys. Rev. Lett. 93 233601Google Scholar

    [50]

    Xu L, Tutunnikov I, Zhou L, Lin K, Qiang J, Lu P, Prior Y, Averbukh I S, Wu J 2020 Phys. Rev. A 102 043116Google Scholar

    [51]

    Tutunnikov I, Xu L, Prior Y, Averbukh I S 2022 Phys. Rev. A 106 L061101Google Scholar

    [52]

    Fan L B, Shu C C, Dong D, He J, Henriksen N E, Nori F 2023 Phys. Rev. Lett. 130 043604Google Scholar

    [53]

    Lu J, Zhang Y, Hwang H Y, Ofori-Okai B K, Fleischer S, Nelson K A 2016 Proc. Natl. Acad. Sci. U.S.A. 113 11800Google Scholar

    [54]

    Sekino H, Bartlett R J 1993 J. Chem. Phys. 98 3022Google Scholar

    [55]

    Wang S, Henriksen N E 2020 Phys. Rev. A 102 063120Google Scholar

    [56]

    Xu S, Lian Z, Hong Q Q, Wang L, Chen H, Huang Y, Shu C C 2024 Phys. Rev. A 110 023116Google Scholar

  • 图 1  初始温度$ T = 15\ {\rm{K}}$时, 三种不同电场强度的飞秒激光脉冲诱导的CO分子准直信号, 其中双箭头示意处$ {\cal{D}}(\langle \cos^2 \theta \rangle) $表示准直度变化的最大幅值

    Fig. 1.  Alignment signal of CO molecule induced by femtosecond pulse of three different field strengths for $ T = 15\ {\rm{K}}$. $ {\cal{D}}(\langle \cos^2 \theta \rangle) $ indicated by the double headed arrow is the maximal change in the amplitude of alignment.

    图 2  (a)—(c)不同初始态下$ l_1 $范数低阶相干性度量$ C_{l_1}(\vert \Delta J \vert = 2) $和准直幅度$ {\cal{D}}(\langle \cos^2 \theta \rangle) $随电场强度的变化; (d)—(f)不同初始态下$ C_{l_1}(\vert \Delta J \vert = 2) $与$ {\cal{D}}(\langle \cos^2 \theta \rangle) $比值$ {\cal{R}}_0 $随电场强度的变化. 左列((a)和(d))、中列((b)和(e))和右列((c)和(f))分别对应初始转动态为$ |0, 0\rangle $, $ |2, 0\rangle $和$ |4, 0\rangle $的计算结果

    Fig. 2.  (a)–(c) Lower order coherence measure $ C_{l_1}(\vert \Delta J \vert = 2) $, amplitude of the degree of alignment with respect to the electric field intensity $ E_0 $ for different initial rotational states, and (d)–(f) their ratios with respect to the field intensity. From left to right, three different initial rotational states$ |0, 0\rangle, |2, 0\rangle, |4, 0\rangle $ are selected

    图 3  (a)不同初始转动态$ |J_0, M_0\rangle $和(b)不同初始温度T时, $ l_1 $范数低阶相干性度量$ C_{l_1}(|\Delta J| = 2) $与准直幅度$ {\cal{D}}(\langle \cos^2 \theta \rangle) $之比$ {\cal{R}}_0 $. 图(b)中蓝线为数值模拟计算结果, 红线为不同比例系数按照玻尔兹曼分布加权平均的结果

    Fig. 3.  Ratio between the lower order coherence measure and the amplitude of the alignment with respect to (a) different initial rotational states and (b) temperatures. The blue line with circles in panel (b) represents the numerical results for $ {\cal{R}}_0 $ and red line is the weighted average of $ {\cal{R}}_0 $ from different initial states.

    图 4  (a)—(c)不同初始态下$ l_1 $范数高阶相干性度量$ C_{l_1}(\vert \Delta J \vert = 4) $和准直幅度$ {\cal{D}}(\langle \cos^2 \theta \rangle) $随电场强度的变化; (d)—(f)不同初始态下$ C_{l_1}(\vert \Delta J \vert = 4) $与$ {\cal{D}}(\langle \cos^2 \theta \rangle) $比值$ {\cal{R}}_2 $随电场强度的变化. 空心圆是直接数值计算结果[$ C_{l_1}(\vert \Delta J \vert = 4)/ {\cal{D}}(\langle \cos^2 \theta \rangle) $], 实线是拟合二次函数($ \propto {\cal{E}}_0^2 $)结果. 左列((a)和(d))、中列((b)和(e))和右列((c)和(f))分别对应初始转动态为$ |0, 0\rangle $, $ |2, 0\rangle $和$ |4, 0\rangle $的计算结果

    Fig. 4.  (a)–(c) Higher order coherence measure $ C_{l_1}(\vert \Delta J \vert = 4) $, amplitude of the degree of alignment with respect to the electric field intensity $ E_0 $ for different initial rotational states, and (d)–(f) their ratios with respect to the field intensity. The empty circle and the solid line correspond to the numerical and fitted results. From left to right, three different initial rotational states$ |0, 0\rangle, |2, 0\rangle, |4, 0\rangle $ are selected

    图 5  $ l_1 $范数相干性度量$ C_{l_1} $中高阶部分($ \vert \Delta J \vert = 4 $)与准直幅度$ {\cal{D}}(\langle \cos^2 \theta \rangle) $的比值$ {\cal{R}}_2 $随电场强度以及初始温度的变化

    Fig. 5.  Ratio between the higher order $ C_{l_1} $ coherence measure and the amplitude of the degree of alignment $ {\cal{D}}(\langle \cos^2 \theta \rangle) $ with respect to the laser intensity and the initial temperature.

    图 6  初始温度$ T = 5\ {\rm{K}}$时, $ l_1 $范数相干性度量$ C_{l_1} $随激光脉冲强度面积的变化行为. 实线为利用拟合公式(24)计算所得结果. 空心圆、五角星、三角形是精确数值模拟的三种不同激发脉冲所对应的结果. 插图展示了这三种激发脉冲对应的脉冲包络

    Fig. 6.  $ C_{l_1} $ coherence measure varying with pulse area for the initial temperature $ T = 5\ {\rm{K}}$. The solid line is the result obtained by calculating Eq. (24). The empty circle, pentagram, triangle are the accurate numerical results induced by three different kinds of laser pulses. The insets are the corresponding pulse envelopes of the pump pulses.

    图 7  初始温度(a) $ T = 1\ {\rm{K}}$, (b) $ T = 10\ {\rm{K}}$, (c) $ T = 20\ {\rm{K}}$时, 高阶相干性度量$ C_{l_1}(\vert \Delta J \vert >2) $与准直幅度$ {\cal{D}}(\langle \cos^2\theta \rangle) $之比随着电场强度的变化. 蓝色区域电场强度$ {\cal{E}}_0 \in (0.5, 7.5)\times $$ 10^9 \;{\rm{V}}/{\rm{m}}$是文中讨论所用电场强度范围. 橙色区域电场强度$ {\cal{E}}_0 \in (7.5, 15)\times 10^9 \;{\rm{V}}/{\rm{m}}$是进一步增强电场强度范围

    Fig. 7.  Changing with the field strength, the ratio of higher-order coherence measure $ C_{l_1}(\vert \Delta J \vert >2) $ to the amplitude of the degree of alignment $ {\cal{D}}(\langle \cos^2\theta \rangle) $ for (a) $ T = 1\ {\rm{K}}$, (b) $ T = 10\ {\rm{K}}$, (c) $ T = 20\ {\rm{K}}$. The blue region corresponds to the range of field strength discussed in the text above, the orange region corresponds to stronger field strengths.

    表 1  不同初始温度T时, 相干性度量$ C_{l_1} $与准直幅度$ {\cal{D}}(\langle \cos^2 \theta \rangle) $比值函数的拟合系数. a, b分别是相干性度量$ C_{l_1} $的低阶部分、高阶部分与$ {\cal{D}}(\langle \cos^2 \theta \rangle) $比值函数中的拟合系数. c是用脉冲强度面积表示的$ C_{l_1} $高阶部分与$ {\cal{D}}(\langle \cos^2 \theta \rangle) $比值函数的拟合系数

    Table 1.  Fit coefficients for the ratio between the $ l_1 $ coherence measure $ C_{l_1} $ and the amplitude of the degree of alignment $ {\cal{D}}(\langle \cos^2 \theta \rangle) $ under different initial temperatures. a represents the coefficients for the lower part of $ C_{l_1} $ which is a constant, b for the higher parts of $ C_{l_1} $ with respect to the electric field intensity and c for the higher parts of $ C_{l_1} $with respect to the pulse area.

    T/K
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
    a 1.68 1.79 1.91 2.01 2.09 2.15 2.21 2.26 2.30 2.33 2.37 2.40 2.42 2.45 2.47 2.49 2.51 2.52 2.54 2.56
    b/103 1.04 1.11 1.16 1.19 1.21 1.22 1.22 1.21 1.20 1.19 1.18 1.16 1.15 1.13 1.12 1.10 1.09 1.07 1.05 1.04
    c 0.395 0.421 0.441 0.453 0.459 0.462 0.462 0.460 0.456 0.452 0.447 0.442 0.436 0.429 0.423 0.417 0.411 0.405 0.400 0.394
    下载: 导出CSV
  • [1]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [2]

    Jia L, Xu L, Zhang P, Fu L 2021 New J. Phys. 23 113047Google Scholar

    [3]

    Jia L, Xing H, Fu L 2022 Phys. Rev. A 106 022814Google Scholar

    [4]

    Jia L, Jiang W C, Xing H, Fu L 2023 Phys. Rev. A 108 013119Google Scholar

    [5]

    Li X, Liu X, Wang C, Ben S, Zhou S, Yang Y, Song X, Chen J, Yang W, Ding D 2024 Light Sci. Appl. 13 250Google Scholar

    [6]

    Litvinyuk I V, Lee K F, Dooley P W, Rayner D M, Villeneuve D M, Corkum P B 2003 Phys. Rev. Lett. 90 233003Google Scholar

    [7]

    Li H, Ray D, De S, Znakovskaya I, Cao W, Laurent G, Wang Z, Kling M F, Le A T, Cocke C L 2011 Phys. Rev. A 84 043429Google Scholar

    [8]

    Ueno K, Mizuse K, Ohshima Y 2021 Phys. Rev. A 103 053104Google Scholar

    [9]

    Marvian I, Spekkens R W, Zanardi P 2016 Phys. Rev. A 93 052331Google Scholar

    [10]

    Morrigan L, Neville S P, Gregory M, Boguslavskiy A E, Forbes R, Wilkinson I, Lausten R, Stolow A, Schuurman M S, Hockett P, Makhija V 2023 Phys. Rev. Lett. 131 193001Google Scholar

    [11]

    Yang Y, Hu X, Wu L, Wang Z, Li X, Zhou S, Wang Z, Guo F, He L, Luo S, Zhang D, Wang J, Chen X, Wu Y, Wang C, Ding D 2024 Phys. Rev. Lett. 133 113203Google Scholar

    [12]

    罗嗣佐, 陈洲, 李孝开, 胡湛, 丁大军 2019 光学学报 39 0126007Google Scholar

    Luo S Z, Chen Z, Li X K, Hu Z, Ding D J 2019 Acta Opt. Sin. 39 0126007Google Scholar

    [13]

    Wang Z, Hu X, Xue X, et al. 2023 Nat. Commun. 14 5420Google Scholar

    [14]

    郑悦, 张宇璇, 孙少华, 丁鹏基, 胡碧涛, 刘作业 2023 物理学报 72 064203Google Scholar

    Zheng Y, Zhang Y X, Sun S H, Ding P J, Hu B T, Liu Z Y 2023 Acta Phys. Sin. 72 064203Google Scholar

    [15]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [16]

    Streltsov A, Adesso G, Plenio M B 2017 Rev. Mod. Phys. 89 041003Google Scholar

    [17]

    林银, 黄明达, 於亚飞, 张智明 2017 物理学报 66 110301Google Scholar

    Lin Y, Huang M D, Yu Y F, Zhang Z M 2017 Acta Phys. Sin. 66 110301Google Scholar

    [18]

    Vrakking M J J 2021 Phys. Rev. Lett. 126 113203Google Scholar

    [19]

    Nabekawa Y, Midorikawa K 2023 Phys. Rev. Res. 5 033083Google Scholar

    [20]

    Jiang W C, Zhong M C, Fang Y K, Donsa S, Březinová I, Peng L Y, Burgdörfer J 2024 Phys. Rev. Lett. 133 163201Google Scholar

    [21]

    Shu C C, Henriksen N E 2013 Phys. Rev. A 87 013408Google Scholar

    [22]

    Hong Q Q, Fan L B, Shu C C, Henriksen N E 2021 Phys. Rev. A 104 013108Google Scholar

    [23]

    Cheng Q Y, Song Y Z, Li D W, Liu Z P, Meng Q T 2022 Chin. Phys. B 31 103301Google Scholar

    [24]

    Lian Z, Luo S, Qi H, Chen Z, Shu C C, Hu Z 2023 Opt. Lett. 48 411Google Scholar

    [25]

    Hong Q Q, Lian Z Z, Shu C C, Henriksen N E 2023 Phys. Chem. Chem. Phys. 25 32763Google Scholar

    [26]

    Koch C P, Lemeshko M, Sugny D 2019 Rev. Mod. Phys. 91 035005Google Scholar

    [27]

    Trabattoni A, Wiese J, De Giovannini U, Olivieri J F, Mullins T, Onvlee J, Son S K, Frusteri B, Rubio A, Trippel S, Küpper J 2020 Nat. Commun. 11 2546Google Scholar

    [28]

    Sansone G, Kelkensberg F, Pérez-Torres J, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario L J, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov Y M, Nisoli M, Martín F, Vrakking M J J 2010 Nature 465 763Google Scholar

    [29]

    Kang H, Quan W, Wang Y, Lin Z, Wu M, Liu H, Liu X, Wang B B, Liu H J, Gu Y Q, Jia X Y, Liu J, Chen J, Cheng Y 2010 Phys. Rev. Lett. 104 203001Google Scholar

    [30]

    Li X, Liu Y, Zhang D, He L, Luo S, Shu C C, Ding D 2023 Phys. Rev. A 108 023114Google Scholar

    [31]

    Zhang W, Gong X, Li H, Lu P, Sun F, Ji Q, Lin K, Ma J, Li H, Qiang J, He F, Wu J 2019 Nat. Commun. 10 757Google Scholar

    [32]

    Lu P, Wang J, Li H, Lin K, Gong X, Song Q, Ji Q, Zhang W, Ma J, Li H, Zeng H, He F, Wu J 2018 Proc. Natl. Acad. Sci. 115 2049Google Scholar

    [33]

    Guo Z, Fang Y, Ge P, Yu X, Wang J, Han M, Gong Q, Liu Y 2021 Phys. Rev. A 104 L051101Google Scholar

    [34]

    Yu X, Zhang X, Hu X, Zhao X, Ren D, Li X, Ma P, Wang C, Wu Y, Luo S, Ding D 2022 Phys. Rev. Lett. 129 023001Google Scholar

    [35]

    McFarland B K, Farrell J P, Bucksbaum P H, Guhr M 2008 Science 322 1232Google Scholar

    [36]

    Chen Y J, Fu L B, Liu J 2013 Phys. Rev. Lett. 111 073902Google Scholar

    [37]

    Huang Y, Meng C, Wang X, Lü Z, Zhang D, Chen W, Zhao J, Yuan J, Zhao Z 2015 Phys. Rev. Lett. 115 123002Google Scholar

    [38]

    Zhai C, Wu Y, Qin L, Li X, Shi L, Zhang K, Kang S, Li Z, Li Y, Tang Q, Yu B 2023 Chin. Phys. B 32 073301Google Scholar

    [39]

    Kanai T, Minemoto S, Sakai H 2007 Phys. Rev. Lett. 98 053002Google Scholar

    [40]

    Lan P, Ruhmann M, He L, Zhai C, Wang F, Zhu X, Zhang Q, Zhou Y, Li M, Lein M, Lu P 2017 Phys. Rev. Lett. 119 033201Google Scholar

    [41]

    Shu C C, Hong Q Q, Guo Y, Henriksen N E 2020 Phys. Rev. A 102 063124Google Scholar

    [42]

    Lapert M, Hertz E, Guérin S, Sugny D 2009 Phys. Rev. A 80 051403Google Scholar

    [43]

    Hoque Z, Lapert M, Hertz E, Billard F, Sugny D, Lavorel B, Faucher O 2011 Phys. Rev. A 84 013409Google Scholar

    [44]

    Karras G, Hertz E, Billard F, Lavorel B, Faucher O, Gershnabel E, Prior Y 2015 Phys. Rev. Lett. 114 153601Google Scholar

    [45]

    Lin K, Lu P, Ma J, Gong X, Song Q, Ji Q, Zhang W, Zeng H, Wu J, Karras G, Siour G, Jean-Michel Hartmann, Faucher O, Gershnabel E, Prior Y, Averbukh I S 2016 Phys. Rev. X 6 041056Google Scholar

    [46]

    Wang B, He L, He Y, Zhang Y, Shao R, Lan P, Lu P 2019 Opt. Express 27 30172Google Scholar

    [47]

    Lian Z, Hu Z, Qi H, Fei D, Luo S, Chen Z, Shu C C 2021 Phys. Rev. A 104 053105Google Scholar

    [48]

    Lian Z, Chen Z, Li J, Shu C C, Hu Z 2023 Phys. Rev. A 108 063108Google Scholar

    [49]

    Lee K F, Villeneuve D M, Corkum P B, Shapiro E A 2004 Phys. Rev. Lett. 93 233601Google Scholar

    [50]

    Xu L, Tutunnikov I, Zhou L, Lin K, Qiang J, Lu P, Prior Y, Averbukh I S, Wu J 2020 Phys. Rev. A 102 043116Google Scholar

    [51]

    Tutunnikov I, Xu L, Prior Y, Averbukh I S 2022 Phys. Rev. A 106 L061101Google Scholar

    [52]

    Fan L B, Shu C C, Dong D, He J, Henriksen N E, Nori F 2023 Phys. Rev. Lett. 130 043604Google Scholar

    [53]

    Lu J, Zhang Y, Hwang H Y, Ofori-Okai B K, Fleischer S, Nelson K A 2016 Proc. Natl. Acad. Sci. U.S.A. 113 11800Google Scholar

    [54]

    Sekino H, Bartlett R J 1993 J. Chem. Phys. 98 3022Google Scholar

    [55]

    Wang S, Henriksen N E 2020 Phys. Rev. A 102 063120Google Scholar

    [56]

    Xu S, Lian Z, Hong Q Q, Wang L, Chen H, Huang Y, Shu C C 2024 Phys. Rev. A 110 023116Google Scholar

  • [1] 周瑞, 李阳, 朱润徽, 张祖兴. 超快光纤激光器中可控脉冲产生与湮灭动力学. 物理学报, 2024, 73(17): 174201. doi: 10.7498/aps.73.20240673
    [2] 方振, 余游, 赵秋烨, 张昱冬, 王治强, 张祖兴. 基于泵浦强度调制的超快光纤激光器中孤子分子光谱脉动动力学研究. 物理学报, 2024, 73(1): 014202. doi: 10.7498/aps.73.20231030
    [3] 郑悦, 张宇璇, 孙少华, 丁鹏基, 胡碧涛, 刘作业. 飞秒激光脉冲对N2分子非绝热准直的调控. 物理学报, 2023, 72(6): 064203. doi: 10.7498/aps.72.20222112
    [4] 陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋. 阿秒脉冲的发展及其在原子分子超快动力学中的应用. 物理学报, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [5] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究. 物理学报, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [6] 向梅, 凌丰姿, 邓绪兰, 魏洁, 布玛丽亚∙阿布力米提, 张冰. 苯乙炔分子电子激发态超快动力学研究. 物理学报, 2021, 70(5): 053302. doi: 10.7498/aps.70.20201473
    [7] 刘兆斌, 李凯, 曾天海, 王锋, 宋新兵, 邵彬, 邹健. 类氢原子核质量对电子状态的影响. 物理学报, 2021, 70(7): 070301. doi: 10.7498/aps.70.20201754
    [8] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [9] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [10] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新. 双色场控制与测量原子分子超快电子动力学过程的研究进展. 物理学报, 2016, 65(22): 223206. doi: 10.7498/aps.65.223206
    [11] 赵晓娜, 庄煜昕, 汪中. 相干布居数拍频信号与基态超精细子能级相干性关系的研究. 物理学报, 2015, 64(13): 134203. doi: 10.7498/aps.64.134203
    [12] 满天龙, 万玉红, 江竹青, 王大勇, 陶世荃. 孪生光束干涉法测量光源的空间相干性. 物理学报, 2013, 62(21): 214203. doi: 10.7498/aps.62.214203
    [13] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福. 光子晶体光纤反常色散区抽运产生超连续谱的相干特性分析. 物理学报, 2012, 61(12): 124211. doi: 10.7498/aps.61.124211
    [14] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福, 肖瑞. 复自相干度度量超连续谱相干性. 物理学报, 2012, 61(15): 154201. doi: 10.7498/aps.61.154201
    [15] 高瑞鑫, 徐振, 陈达鑫, 徐初东, 陈志峰, 刘晓东, 周仕明, 赖天树. GdFeCo磁光薄膜中RE-TM反铁磁耦合与激光感应超快磁化翻转动力学研究. 物理学报, 2009, 58(1): 580-584. doi: 10.7498/aps.58.580
    [16] 王 华, 王向朝, 曾爱军, 杨 坤. 大气湍流对斜程传输准单色高斯-谢尔光束空间相干性的影响. 物理学报, 2008, 57(1): 634-638. doi: 10.7498/aps.57.634
    [17] 董全林, 王 坤, 张春熹, 刘 彬. 圆柱体相对转动动力学方程的积分解. 物理学报, 2004, 53(2): 337-342. doi: 10.7498/aps.53.337
    [18] 梁文青, 储开芹, 张智明, 谢绳武. 超冷V型三能级原子注入的微波激射:原子相干性对腔场光子统计的影响. 物理学报, 2001, 50(12): 2345-2355. doi: 10.7498/aps.50.2345
    [19] 倪光炯, 陈苏卿, 周谷声. 辐射的相干性和熵的增加. 物理学报, 1982, 31(5): 585-603. doi: 10.7498/aps.31.585
    [20] 王之江. 电磁辐射的相干性. 物理学报, 1963, 19(5): 320-335. doi: 10.7498/aps.19.320
计量
  • 文章访问数:  455
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2024-12-16
  • 上网日期:  2024-12-25

/

返回文章
返回