-
本文探讨了有限温度下,飞秒激光脉冲诱导的分子准直现象中内在相干性度量与其准直信号之间的定量关系.针对超快非共振激光脉冲诱导分子准直问题,推导了转动体系$l_1$范数相干性度量(\(C_{l_1}(\rho)\)即密度矩阵\(\rho\)中所有非对角元素绝对值之和)与准直幅度(准直度最大值与最小值之差)之比与电场强度之间存在的定量关系,并通过对CO分子的数值模拟进行了验证.在此基础上,进一步给出了这一比值与脉冲面积之间的映射关系。本文的研究结果为实验中探测转动体系的相干性度量提供了新的思路,并为利用分子转动态进行相干性度量研究奠定了理论基础,有利于促进超快强场物理与量子信息度量之间的交叉融合.Femtosecond laser-induced excitation of molecular rotational states leads to phenomena such as alignment and orientation, which fundamentally stem from the coherence between the induced rotational states. In recent years, the quantitative study of coherence in the field of quantum information has garnered widespread attention. Different kinds of coherence measures have been proposed and investigated. This paper delves into the quantitative correlation between the intrinsic coherence measurement and the degree of molecular alignment induced by femtosecond laser pulses at finite temperatures. By examining the molecular alignment induced by ultrafast non-resonant laser pulses, the study establishes a quantitative relationship between the \(l_1\) norm coherence measure (\(C_{l_1}(\rho)\) -- the sum of the absolute values of all off-diagonal elements of the density matrix \(\rho\)) and the alignment amplitude ($\mathcal{D}\langle \cos^2 \theta \rangle$--the difference between the maximum and minimum alignment). A quadratic relationship $ C_{l_1} = (a + b\mathcal{E}^2_0)\times \mathcal{D}\langle \cos^2 \theta \rangle$ between the the \(l_1\) norm coherence measure and $\mathcal{D}\langle \cos^2 \theta \rangle$ with respect to the electric field intensity $\mathcal{E}_0$ is obtained. This relationship is validated through numerical simulations of the CO molecule and the ratio coefficients $a$ and $b$ for different temperatures are demonstrated. Furthermore, a mapping relationship between this ratio and the pulse intensity area is established. The findings of this study offer an alternative methodology for experimentally detecting the coherence measure within femtosecond laser-excited rotational systems, thereby extending the potential applicability of molecular rotational states to study the coherence measure in the field of quantum resources. This will facilitate the interdisciplinary integration of ultrafast strong-field physics and quantum information.
-
Keywords:
- Coherence /
- Molecular Alignment /
- Rotational Dynamics /
- Ultrafast Pulses
-
[1] Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66
[2] Jia L, Xu L, Zhang P, Fu L 2021 New J. Phys. 23 113047
[3] Jia L, Xing H, Fu L 2022 Phys. Rev. A 106 022814
[4] Jia L, Jiang W C, Xing H, Fu L 2023 Phys. Rev. A 108 013119
[5] Li X, Liu X, Wang C, Ben S, Zhou S, Yang Y, Song X, Chen J, Yang W, Ding D 2024 Light Sci. Appl. 13 250
[6] Litvinyuk I V, Lee K F, Dooley P W, Rayner D M, Villeneuve D M, Corkum P B 2003 Phys. Rev. Lett. 90 233003
[7] Li H, Ray D, De S, Znakovskaya I, Cao W, Laurent G, Wang Z, Kling M F, Le A T, Cocke C L 2011 Phys. Rev. A 84 043429
[8] Ueno K, Mizuse K, Ohshima Y 2021 Phys. Rev. A 103 053104
[9] Marvian I, Spekkens R W, Zanardi P 2016 Phys. Rev. A 93 052331
[10] Morrigan L, Neville S P, Gregory M, Boguslavskiy A E, Forbes R, Wilkinson I, Lausten R, Stolow A, Schuurman M S, Hockett P, Makhija V 2023 Phys. Rev. Lett. 131 193001
[11] Yang Y, Hu X, Wu L, Wang Z, Li X, Zhou S, Wang Z, Guo F, He L, Luo S, Zhang D, Wang J, Chen X, Wu Y, Wang C, Ding D 2024 Phys. Rev. Lett. 133 113203
[12] Luo S, Chen Z, Li X, Hu Z, Ding D 2019 Acta Opt. Sin. 39 0126007 (in Chinese) [罗嗣佐, 陈洲, 李孝开, 胡湛, 丁大军 2019 光学学报 39 0126007]
[13] Wang Z, Hu X, Xue X, Zhou S, Li X, Yang Y, Zhou J, Shu Z, Zhao B, Yu X, et al. 2023 Nat. Commun. 14 5420
[14] Zheng Y, Zhang Y X, Sun S H, Ding P J, Hu B T, Liu Z Y 2023 Acta Phys. Sin. 72(6) 064203 (in Chinese) [郑悦, 张宇璇, 孙少华, 丁鹏基, 胡碧涛, 刘作业, 2023 物理学报 72(6) 064203]
[15] Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401
[16] Streltsov A, Adesso G, Plenio M B 2017 Rev. Mod. Phys. 89 041003
[17] Lin Y, Huang M D, Yu Y F, Zhang Z M 2017 Acta Phys. Sin. 66(11) 110301 (in Chinese) [林银, 黄明达, 於亚飞, 张智明, 2017 物理学报 66(11) 110301]
[18] Vrakking M J J 2021 Phys. Rev. Lett. 126 113203
[19] Nabekawa Y, Midorikawa K 2023 Phys. Rev. Res. 5 033083
[20] Jiang W C, Zhong M C, Fang Y K, Donsa S, Březinová I, Peng L Y, Burgdörfer J 2024 Phys. Rev. Lett. 133 163201
[21] Shu C C, Henriksen N E 2013 Phys. Rev. A 87 013408
[22] Hong Q Q, Fan L B, Shu C C, Henriksen N E 2021 Phys. Rev. A 104 013108
[23] Cheng Q Y, Song Y Z, Li D W, Liu Z P, Meng Q T 2022 Chin. Phys. B 31 103301
[24] Lian Z, Luo S, Qi H, Chen Z, Shu C C, Hu Z 2023 Opt. Lett. 48 411
[25] Hong Q Q, Lian Z Z, Shu C C, Henriksen N E 2023 Phys. Chem. Chem. Phys. 25 32763
[26] Koch C P, Lemeshko M, Sugny D 2019 Rev. Mod. Phys. 91 035005
[27] Trabattoni A, Wiese J, De Giovannini U, Olivieri J F, Mullins T, Onvlee J, Son S K, Frusteri B, Rubio A, Trippel S, Küpper J 2020 Nat. Commun. 11 2546
[28] Sansone G, Kelkensberg F, Pérez-Torres J, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario L J, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov Y M, Nisoli M, Martín F, Vrakking M J J 2010 Nature 465 763
[29] Kang H, Quan W, Wang Y, Lin Z, Wu M, Liu H, Liu X, Wang B B, Liu H J, Gu Y Q, Jia X Y, Liu J, Chen J, Cheng Y 2010 Phys. Rev. Lett. 104 203001
[30] Li X, Liu Y, Zhang D, He L, Luo S, Shu C C, Ding D 2023 Phys. Rev. A 108 023114
[31] Zhang W, Gong X, Li H, Lu P, Sun F, Ji Q, Lin K, Ma J, Li H, Qiang J, He F, Wu J 2019 Nat. Commun. 10 757
[32] Lu P, Wang J, Li H, Lin K, Gong X, Song Q, Ji Q, Zhang W, Ma J, Li H, Zeng H, He F, Wu J 2018 Proc. Nati. Acad. Sci. 115 2049
[33] Guo Z, Fang Y, Ge P, Yu X, Wang J, Han M, Gong Q, Liu Y 2021 Phys. Rev. A 104 L051101
[34] Yu X, Zhang X, Hu X, Zhao X, Ren D, Li X, Ma P, Wang C, Wu Y, Luo S, Ding D 2022 Phys. Rev. Lett. 129 023001
[35] McFarland B K, Farrell J P, Bucksbaum P H, Guhr M 2008 Science 322 1232
[36] Chen Y J, Fu L B, Liu J 2013 Phys. Rev. Lett. 111 073902
[37] Huang Y, Meng C, Wang X, Lü Z, Zhang D, Chen W, Zhao J, Yuan J, Zhao Z 2015 Phys. Rev. Lett. 115 123002
[38] Zhai C, Wu Y, Qin L, Li X, Shi L, Zhang K, Kang S, Li Z, Li Y, Tang Q, Yu B 2023 Chin. Phys. B 32 073301
[39] Kanai T, Minemoto S, Sakai H 2007 Phys. Rev. Lett. 98 053002
[40] Lan P, Ruhmann M, He L, Zhai C, Wang F, Zhu X, Zhang Q, Zhou Y, Li M, Lein M, Lu P 2017 Phys. Rev. Lett. 119 033201
[41] Shu C C, Hong Q Q, Guo Y, Henriksen N E 2020 Phys. Rev. A 102 063124
[42] Lapert M, Hertz E, Guérin S, Sugny D 2009 Phys. Rev. A 80 051403
[43] Hoque Z, Lapert M, Hertz E, Billard F, Sugny D, Lavorel B, Faucher O 2011 Phys. Rev. A 84 013409
[44] Karras G, Hertz E, Billard F, Lavorel B, Faucher O, Gershnabel E, Prior Y 2015 Phys. Rev. Lett. 114 153601
[45] Lin K, Lu P, Ma J, Gong X, Song Q, Ji Q, Zhang W, Zeng H, Wu J, Karras G, Siour G, Jean-Michel Hartmann, Faucher O, Gershnabel E, Prior Y, Averbukh I S 2016 Phys. Rev. X 6 041056
[46] Wang B, He L, He Y, Zhang Y, Shao R, Lan P, Lu P 2019 Opt. Express 27 30172
[47] Lian Z, Hu Z, Qi H, Fei D, Luo S, Chen Z, Shu C C 2021 Phys. Rev. A 104 053105
[48] Lian Z, Chen Z, Li J, Shu C C, Hu Z 2023 Phys. Rev. A 108 063108
[49] Lee K F, Villeneuve D M, Corkum P B, Shapiro E A 2004 Phys. Rev. Lett. 93 233601
[50] Xu L, Tutunnikov I, Zhou L, Lin K, Qiang J, Lu P, Prior Y, Averbukh I S, Wu J 2020 Phys. Rev. A 102 043116
[51] Tutunnikov I, Xu L, Prior Y, Averbukh I S 2022 Phys. Rev. A 106 L061101
[52] Fan L B, Shu C C, Dong D, He J, Henriksen N E, Nori F 2023 Phys. Rev. Lett. 130 043604
[53] Lu J, Zhang Y, Hwang H Y, Ofori-Okai B K, Fleischer S, Nelson K A 2016 Proc Natl Acad Sci USA 113 11800
[54] Sekino H, Bartlett R J 1993 J. Chem. Phys. 98 3022
[55] Wang S, Henriksen N E 2020 Phys. Rev. A 102 063120
[56] Xu S, Lian Z, Hong Q Q, Wang L, Chen H, Huang Y, Shu C C 2024 Phys. Rev. A 110 023116
计量
- 文章访问数: 13
- PDF下载量: 0
- 被引次数: 0