搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强度、超平坦白激光的空间相干性测量

杨兰 刘峻铭 洪丽红 刘励强 李志远

引用本文:
Citation:

高强度、超平坦白激光的空间相干性测量

杨兰, 刘峻铭, 洪丽红, 刘励强, 李志远

Spatial coherence analysis of intense ultra-flat white laser

YANG Lan, LIU Junming, HONG Lihong, LIU Liqiang, LI Zhiyuan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 白光通常被认为是非相干的, 然而, 近年来广受关注的超连续激光白激光具有激光强度高、相干性好的特点, 挑战了这一局限性. 尽管白激光已经被提出并在技术上得到了广泛的发展, 但对其光波性能, 尤其是空间相干性的具体分析却十分缺乏, 这在一定程度上限制了其实际应用. 本文对课题组2023年自主研制的由高强度飞秒激光通过二阶、三阶非线性效应展宽谱带所产生的高强度、超平坦谱带白激光开展了波前强度、偏振特性以及空间相干性的详细实验研究和分析. 通过使用带通滤波片从白色激光中提取多个分量, 利用杨氏双缝干涉仪测量干涉条纹的对比度, 以评估其空间相干性. 实验结果显示, 白激光的波前强度呈准高斯分布, 光斑均匀, 是线偏振光. 白激光在杨氏双缝干涉仪中产生的可见光波段平均干涉条纹对比度是0.77, 表明其具有优异的空间相干性. 本研究将为白色激光在彩色全息、白光干涉仪表面层析、显微成像及其他需要具有一定相干性的白光的应用领域提供有价值的指导.
    White light is typically considered incoherent; however, the recently popular supercontinuum laser, also known as white laser, spans the visible spectrum and features high laser intensity and good coherence, challenging this traditional limitation. The white laser has a wide range of applications, including multi-channel confocal microscopy, color holography, and white light interferometric surface topography. Although white lasers have been proposed and developed extensively in terms of technology, specific analyses of their optical wave properties—especially spatial coherence—are still lacking. Since many applications impose certain requirements on the spatial coherence of white light, the lack of research into the spatial coherence of white lasers has, to some extent, limited their practical use.This paper presents a detailed experimental study and analysis of the wavefront intensity, polarization characteristics, and spatial coherence of the high-intensity ultra-flat spectrum white laser that was independently developed by our research group in 2023. The laser is generated by broadening the spectrum of a high-intensity Ti:sapphire femtosecond laser through second- and third-order nonlinear effects.A bandpass filter is used to extract eight components from the white laser, with a central wavelength range from 405 nm to 700 nm and a bandwidth of 10 nm for each component. By measuring the performance of these eight quasi-monochromatic lasers, the characteristics of the white laser of the entire visible spectrum can be evaluated.The CCD imaging of the collimated quasi-monochromatic laser spots reveals that their wavefront intensities exhibit a quasi-Gaussian distribution with uniform beam profiles. Polarization measurements by using polarizers at various angles show that the white laser is linearly polarized. A Young’s double-slit interferometer (YDSI) is used to measure the interference fringe contrast of the eight quasi-monochromatic beams to assess their spatial coherence. The experimental results show that the average interference fringe contrast of the entire visible spectrum is 0.77, and the difference between different wavelengths is very small.This indicates that the white laser has excellent spatial coherence in the visible range.The eight quasi-monochromatic lasers in the visible spectrum all exhibit quasi-Gaussian wavefront intensity distributions, linear polarization, and high spatial coherence. This indicates that the white laser inherits the excellent properties of the Ti:sapphire laser. All of these data provide valuable guidance for the application of white lasers in color holography, white light interferometric surface tomography, microscopic imaging, and other fields that require white light with a certain degree of coherence.
  • 图 1  对白激光空间相干性等激光特性的分析流程

    Fig. 1.  Analysis scheme of laser characteristics such as spatial coherence of white laser.

    图 2  白激光的产生原理和基本信息 (a) 产生飞秒白激光的光路图, 该激光通过高强度钛宝石飞秒脉冲激光束经过熔融石英-CPPLN二阶与三阶非线性协同频率转换模块产生; (b)经过熔融石英平板后的光谱测量结果; (c) 经过熔融石英平板后的激光光斑; (d) 白激光的测量光谱, 展现出超平坦的光谱特性, 其中彩色带表示可见光范围, 其放大图显示在插图中; (e) 系统最终输出的白激光的光斑

    Fig. 2.  Basic information of the white laser: (a) Schematic diagram of a homemade femtosecond white laser created by sending an intense Ti:sapphire femtosecond pulse laser beam through a fused silica-CPPLN 2 nd-NL and 3 rd-NL synergistic nonlinear frequency conversion module (b) The measured spectrum of the light after the fused silica plate. (c) The spot of the laser after the fused silica plate. (d) The measured spectrum of the white laser shows the ultra-flat spectral profile. The color band represents the visible range, whose enlarged view is shown in the inset. (e) The spot of the white laser beam.

    图 3  波前强度分析, 即白激光通过中心波长分别为 (a) 405 nm, (b) 450 nm, (c) 500 nm, (d) 532 nm, (e) 580 nm, (f) 600 nm, (g) 635 nm, (h) 700 nm, 带宽为 10 nm 的滤波片后, 不同光谱成分的波前强度(左)、线强度分布(中)和光谱分布(右)

    Fig. 3.  Wavefront analysis. Wavefront (left), line profile (center), and spectral profile (right) of the white laser at different spectral components in the visible band when it passes through 10 nm bandwidth filters centering at the wavelength of (a) 405 nm, (b) 450 nm, (c) 500 nm, (d) 532 nm, (e) 580 nm, (f) 600 nm, (g) 635 nm, and (h) 700 nm

    图 4  杨氏双缝实验的实验结果 (a)杨氏双缝实验的光路图, 其中F为带有不同滤波片的可旋转支架, CE为光束准直扩束系统; (b)—(i) 八种波长的干涉条纹和强度线轮廓图, 其中(b) λ = 405 nm, $ \upsilon $ = 0.86; (c) λ = 450 nm, $ \upsilon $ = 0.86; (d) λ = 500 nm, $ \upsilon $ = 0.75; (e) λ = 532 nm, $ \upsilon $ = 0.82; (f) λ = 580 nm, $ \upsilon $ = 0.77; (g) λ = 600 nm, $ \upsilon $ = 0.62; (h) λ = 635 nm, $ \upsilon $ = 0.80; (i) λ = 700 nm, $ \upsilon $ = 0.67

    Fig. 4.  Experimental results in the Young’s double-slit experiment: (a) The architecture of Young’s double-slit experiment, where F represents rotatable holder embedded with different filters, CE represents collimated beam expanding system; (b)—(i) the interference fringes and intensity line profile of the eight wavelengths, where (b) λ = 405 nm, $ \upsilon $ = 0.86; (c) λ = 450 nm, $ \upsilon $ = 0.86; (d) λ = 500 nm, $ \upsilon $ = 0.75; (e) λ = 532 nm, $ \upsilon $ = 0.82; (f) λ = 580 nm, $ \upsilon $ = 0.77; (g) λ = 600 nm, $ \upsilon $ = 0.62; (h) λ = 635 nm, $ \upsilon $ = 0.80; (i) λ = 700 nm, $ \upsilon $ = 0.67.

    表 1  从白激光中提取光波所使用的滤波片的中心波长和带宽

    Table 1.  Central wavelength and bandwidth of the filter used to extract the light wave from the white laser.

    Wavelength/nm
    405450500532580600635700
    Bandwidth/nm1010101010101010
    下载: 导出CSV

    表 2  各准单色光经过滤波片后功率随偏振片角度的变化

    Table 2.  Power variation with polarizer angle for each quasi-monochromatic light after filtering.

    $ \lambda /{\mathrm{n}}{\mathrm{m}} $
    405 450 500 532 580 600 635 700
    $ {I}_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $/$ {\mathrm{\mu }}{\mathrm{W}} $ 43.7 42.5 43.5 40.1 45.7 46.8 45.0 46.2
    $ {\theta }_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $/(°) 0 0 1 0 1 0 0 0
    $ {I}_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $/$ {\mathrm{\mu }}{\mathrm{W}} $ 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2
    $ {\theta }_{{\mathrm{m}}{\mathrm{i}}{\mathrm{n}}} $/(°) 90 90 89 90 89 90 90 90
    下载: 导出CSV
  • [1]

    Alfano R R 1990 Appl. Opt. 29 1242Google Scholar

    [2]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592Google Scholar

    [3]

    Fork R L, Tomlinson W J, Shank C V, Hirlimann C, Yen R, Tomlinson W J 1983 Opt. Lett. 8 1Google Scholar

    [4]

    Froehly L, Meteau J 2012 Opt. Fiber Technol. 18 411Google Scholar

    [5]

    Travers J C, Grigorova T F, Brahms C, Belli F 2019 Nat. Photonics 13 547Google Scholar

    [6]

    Elu U, Maidment L, Vamos L, Tani F, Novoa D, Frozs H, Badikov V, Badikov D, Petrov V, Russell J, Biegert J 2021 Nat. Photonics 15 277Google Scholar

    [7]

    Schliesser A, Picqué N, Hänsch T W 2012 Nat. Photonics 6 440Google Scholar

    [8]

    Udem T, olzwarth R, Hänsch T W 2002 Nature 416 233Google Scholar

    [9]

    Petersen C R, Møller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830Google Scholar

    [10]

    Jiang X, Joly N Y, Finger M A, Babic F, Wong K L, Travers J C, Russell J 2015 Nat. Photonics 9 133Google Scholar

    [11]

    He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar

    [12]

    Mollenauer L F, Stolen R H, Gordon J P, Tomlinson W J 1983 Opt. Lett. 8 289Google Scholar

    [13]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [14]

    Chen B Q, Ren M L, Liu R J, Zhang C, Sheng Y, Ma B Q, Li Z Y 2014 Light Sci. Appl. 3 e189Google Scholar

    [15]

    Chen B Q, Zhang C, Hu C Y, Liu R J, Li Z Y 2015 Phys. Rev. Lett. 115 083902Google Scholar

    [16]

    Chen B Q, Hong L H, Hu C Y, Li Z Y 2021 Research 2021 1539730

    [17]

    Li M Z, Hong L H, Li Z Y 2022 Research 2022 9871729

    [18]

    Hong L H, Hu C, Liu Y Y, He H J, Liu L Q, Wei Z Y, Li Z Y 2023 PhotoniX 4 11Google Scholar

    [19]

    Hong L H, Liu L Q, Liu Y Y, Qian J Y, Feng R Y, Li W K, Li Y Y, Peng Y J, Leng Y X, Li R X, Li Z Y 2023 Light Sci. Appl. 12 199Google Scholar

    [20]

    Hong L H, Yang H Y, Li Z Y 2023 Research 6 0210Google Scholar

    [21]

    Knapp T, Lima N, Daigle N, Duan S, Merchant J L, Sawyer T W 2024 J. Biomed. Opt. 29 016007

    [22]

    Hassan M A 2025 Appl. Opt. 64 654Google Scholar

    [23]

    Shimobaba T, Ito T 2003 Opt. Rev. 10 339Google Scholar

    [24]

    Kueny E, Meier J, Levecq X, Varkentina N, Kärtner F X, Calendron L 2018 Opt. Express 26 31299Google Scholar

    [25]

    Genty G, Friberg A T, Turunen J 2016 Prog. Opt. 61 71

    [26]

    Melnik M V, Tcypkin A N, Kozlov S A 2018 Rom. J. Phys. 63 203

    [27]

    Zeylikovich I, Alfano R R 2003 Appl. Phys. B 77 265

    [28]

    Su Y B, Fang S B, Gao Y T, Zhao K, Chang G Q, Wei Z Y 2021 Appl. Phys. Lett. 118 261102Google Scholar

    [29]

    Wang P, Huang J, Xie S, Troles J, Russell J 2021 Photon. Res. 9 630Google Scholar

    [30]

    Zhu X, Zhao D, Zhang B, Yang L Y, Yang Y K, Liu S, Hou J 2023 Opt. Express 31 13182Google Scholar

    [31]

    Chang K Y, Chen G Y, Yu H C, Liu J M 2023 Opt. Commun. 533 129281Google Scholar

    [32]

    冯柳宾, 鲁欣, 刘晓龙, 葛绪雷, 马景龙, 李玉同, 陈黎明, 董全力, 王伟民, 滕浩, 王兆华, 盛政明, 魏志义, 贺端威, 张杰 2021 物理学报 61 174206

    Feng L B, Lu X, Liu X L, Ge X L, Ma J L, Li Y T, Chen L M, D Q L, Wang W M, Teng H, Wang Z H, Sheng Z M, Wei Z Y, He D W, Zhang J 2021 Acta Phys. Sin. 61 174206

  • [1] 肖杨杨, 王晓方. 磁场对超热电子产生辐射对比度的影响. 物理学报, doi: 10.7498/aps.74.20250144
    [2] 廉振中, 洪倩倩, 贾利娟, 孟建桥, 束传存. 飞秒激光诱导分子准直相干性的度量分析. 物理学报, doi: 10.7498/aps.74.20241400
    [3] 李艳玲, 梅海平, 任益充, 张骏昕, 陶志炜, 艾则孜姑丽·阿不都克热木, 刘世韦. 湍流大气中随机粗糙表面激光回波空间相干性仿真. 物理学报, doi: 10.7498/aps.71.20212420
    [4] 周博睿, 谈宜东, 沈学举, 朱开毅, 鲍丽萍. 微泡造影剂增强超声调制激光回馈成像对比度的机理研究. 物理学报, doi: 10.7498/aps.68.20190770
    [5] 范启蒙, 尹成友. 高对比度目标的电磁逆散射超分辨成像. 物理学报, doi: 10.7498/aps.67.20180266
    [6] 田恒, 朱京平, 张云尧, 管今哥, 侯洵. 浑浊介质中图像对比度与成像方式的关系. 物理学报, doi: 10.7498/aps.65.084201
    [7] 满天龙, 万玉红, 江竹青, 王大勇, 陶世荃. 孪生光束干涉法测量光源的空间相干性. 物理学报, doi: 10.7498/aps.62.214203
    [8] 李玉叶, 贾冰, 古华光. 白噪声诱发Morris-Lecar模型构成的Ⅱ型兴奋网络产生多次空间相干共振. 物理学报, doi: 10.7498/aps.61.070504
    [9] 孟祥富, 王琛, 安红海, 贾果, 方智恒, 周华珍, 孙今人, 王伟, 傅思祖. 驱动激光束间相干性以及对背向散射影响的研究. 物理学报, doi: 10.7498/aps.61.185202
    [10] 王华, 闫帅, 闫芬, 蒋升, 毛成文, 梁东旭, 杨科, 李爱国, 余笑寒. 上海同步辐射装置波荡器光源空间相干性的研究. 物理学报, doi: 10.7498/aps.61.144102
    [11] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响. 物理学报, doi: 10.7498/aps.59.4634
    [12] 肖 瑞, 侯 静, 姜宗福. 激光器阵列的部分相干性对相干合成远场输出特性的影响. 物理学报, doi: 10.7498/aps.57.853
    [13] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, doi: 10.7498/aps.57.2607
    [14] 韩俊鹤, 姚保利, 郜 鹏, 陈利菊, 王英利, 雷 铭. 不同记录光强下辅助紫光对菌紫质薄膜全息衍射效率的影响. 物理学报, doi: 10.7498/aps.57.2199
    [15] 王 华, 王向朝, 曾爱军, 杨 坤. 大气湍流对斜程传输准单色高斯-谢尔光束空间相干性的影响. 物理学报, doi: 10.7498/aps.57.634
    [16] 肖 瑞, 周 朴, 侯 静, 姜宗福, 刘 明. 激光器的部分相干性对光纤激光器阵列相干合成远场图样的影响. 物理学报, doi: 10.7498/aps.56.819
    [17] 易煦农, 胡 巍, 罗海陆, 朱 静. 用高阶对比度研究光束的小尺度自聚焦. 物理学报, doi: 10.7498/aps.54.749
    [18] 印建平, 朱士群, 高伟建, 王育竹. 双模激光场的二阶量子相干性及其时谱特性. 物理学报, doi: 10.7498/aps.44.72
    [19] 倪光炯, 陈苏卿, 周谷声. 辐射的相干性和熵的增加. 物理学报, doi: 10.7498/aps.31.585
    [20] 王之江. 电磁辐射的相干性. 物理学报, doi: 10.7498/aps.19.320
计量
  • 文章访问数:  309
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-23
  • 修回日期:  2025-04-07
  • 上网日期:  2025-04-17

/

返回文章
返回