搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强度、超平坦白激光的空间相干性测量

杨兰 刘峻铭 洪丽红 刘励强 李志远

引用本文:
Citation:

高强度、超平坦白激光的空间相干性测量

杨兰, 刘峻铭, 洪丽红, 刘励强, 李志远

Spatial coherence analysis of an intense ultra-flat white laser

YANG Lan, LIU Junming, HONG Lihong, LIU Liqiang, LI Zhiyuan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 白光通常被认为是非相干的,然而,近年来广受关注的超连续激光——白激光,有激光强度高、相干性好的特点,挑战了这一局限性。尽管白激光已经被提出并在技术上得到了广泛的发展,但对其光波性能,尤其是空间相干性的具体分析却十分缺乏,这在一定程度上限制了其实际应用。本文对课题组2023年自主研制的由高强度飞秒激光通过二阶、三阶非线性效应展宽谱带所产生的高强度、超平坦谱带白激光开展了波前强度、偏振特性以及空间相干性的详细实验研究和分析。通过使用带通滤波片从白色激光中提取多个分量,利用杨氏双缝干涉仪(YDSI)测量干涉条纹的对比度,以评估其空间相干性。实验结果显示,白激光的波前强度呈准高斯分布,光斑均匀,是线偏振光。白激光在YDSI中产生的可见光波段平均干涉条纹对比度是0.77,表明它具有优异的空间相干性。所有这些数据将为白色激光在彩色全息、白光干涉仪表面层析、显微成像及其他需要具有一定相干性的白光的应用领域提供有价值的指导。
    White light is typically considered incoherent; however, the recently popular supercontinuum laser—also known as white laser—that spans the visible spectrum, features high laser intensity and good coherence, challenging this traditional limitation. The white laser has a wide range of applications, including multi-channel confocal microscopy, color holography, and white light interferometric surface topography. Although white lasers have been proposed and developed extensively in terms of technology, specific analyses of their optical wave properties—especially spatial coherence—are still lacking. Since many applications impose certain requirements on the spatial coherence of white light, the lack of research into the spatial coherence of white lasers has, to some extent, limited their practical use.
    This paper presents a detailed experimental study and analysis of the wavefront intensity, polarization characteristics, and spatial coherence of a high-intensity, ultra-flat spectrum white laser independently developed by our research group in 2023. The laser was generated by broadening the spectrum of a high-intensity Ti:sapphire femtosecond laser through second- and third-order nonlinear effects.
    A bandpass filter was used to extract eight components from the white laser, with central wavelengths ranging from 405 nm to 700 nm and a bandwidth of 10 nm each. By measuring the performance of these eight quasi-monochromatic lasers, the characteristics of the white laser across the visible spectrum can be evaluated.
    CCD imaging of the collimated quasi-monochromatic laser spots revealed that their wavefront intensities exhibit a quasi-Gaussian distribution with uniform beam profiles. Polarization measurements using polarizers at various angles showed that the white laser is linearly polarized. A Young's Double-Slit Interferometer (YDSI) was used to measure the interference fringe contrast of the eight quasi-monochromatic beams to assess their spatial coherence. The experimental results showed that the average interference fringe contrast across the visible spectrum was 0.77, with little variation among different wavelengths. This indicates that the white laser has excellent spatial coherence in the visible range.
    The eight quasi-monochromatic lasers in the visible spectrum all exhibit quasi-Gaussian wavefront intensity distributions, linear polarization, and high spatial coherence. This indicates that the white laser inherits the excellent properties of the Ti:sapphire laser. All of this data provides valuable guidance for the application of white lasers in areas such as color holography, white light interferometric surface tomography, microscopic imaging, and other fields that require white light with a certain degree of coherence.
  • [1]

    Alfano R R 1990 Applied Optics 29 1242

    [2]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592

    [3]

    Fork R L, Tomlinson W J, Shank C V, Hirlimann C, Yen R, Tomlinson W J 1983 Opt. Lett. 8 1

    [4]

    Froehly L, Meteau J 2012 Opt. Fiber Technol. 18 411

    [5]

    Travers J C, Grigorova T F, Brahms C, Belli F 2019 Nat. Photonics 13 547

    [6]

    Elu U, Maidment L, Vamos L, Tani F, Novoa D, Frozs H, Badikov V, Badikov D, Petrov V, Russell J, Biegert J 2021 Nat. Photonics 15 277

    [7]

    Schliesser A, Picqué N, Hänsch T W 2012 Nat. Photonics 6 440

    [8]

    Udem T, olzwarth R, Hänsch T W 2002 Nature 416 233

    [9]

    Petersen C R, Møller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A, Bang O 2014 Nat. Photonics 8 830

    [10]

    Jiang X, Joly N Y, Finger M A, Babic F, Wong K L, Travers J C, Russell J 2015 Nat. Photonics 9 133

    [11]

    He P, Liu Y, Zhao K, Teng H, He X, Huang P, Huang H, Zhong S, Jiang Y, Fang S, Hou F, Wei Z 2017 Opt. Lett. 42 474

    [12]

    Mollenauer L F, Stolen R H, Gordon J P, Tomlinson W J 1983 Opt. Lett. 8 289

    [13]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66

    [14]

    Chen B Q, Ren M L, Liu R J, Zhang C, Sheng Y, Ma B Q, Li Z Y 2014 Light Sci. Appl. 3 e189

    [15]

    Chen B Q, Zhang C, Hu C Y, Liu R J, Li Z Y 2015 Phys. Rev. Lett. 115 083902

    [16]

    Chen B Q, Hong L H, Hu C Y 2021 Research 2021

    [17]

    Li M Z, Hong L H, Li Z Y 2022 Research 2022

    [18]

    Hong L H, Liu L Q, Liu Y Y, Qian J Y, Feng R Y, Li W K, Li Y Y, Peng Y J, Leng Y X, Li R X, Li Z Y 2023 Light Sci. Appl. 12 199

    [19]

    Hong L H, Yang H Y, Li Z Y 2023 Research 6 0210

    [20]

    Knapp T, Lima N, Daigle N, Duan S, Merchant J L, Sawyer T W 2024 J. Biomed. Opt. 29 016007

    [21]

    Hassan M A 2025 Appl. Opt. 64 654

    [22]

    Shimobaba T, Ito T 2003 Opt. Rev. 10 339

    [23]

    Kueny E, Meier J, Levecq X, Varkentina N, Kärtner F X, Calendron L 2018 Opt. Express 26 31299

    [24]

    Genty G, Friberg A T, Turunen J 2016 Prog. Opt. 61 71

    [25]

    Melnik M V, Tcypkin A N, Kozlov S A 2018 Rom. J. Phys. 63 203

    [26]

    Zeylikovich I, Alfano R R 2003 Appl. Phys. B 77 265

    [27]

    Hong L H, Hu C, Liu Y Y, He H J, Liu L Q, Wei Z Y, Li Z Y 2023 PhotoniX 4 11

    [28]

    Su Y B, Fang S B, Gao Y T, Zhao K, Chang G Q, Wei Z Y 2021 Appl. Phys. Lett. 118 261102

    [29]

    Wang P, Huang J, Xie S, Troles J, Russell J 2021 Photon. Res. 9 630

    [30]

    Zhu X, Zhao D, Zhang B, Yang L Y, Yang Y K, Liu S, Hou J 2023 Opt. Express 31 13182

    [31]

    Chang K Y, Chen G Y, Yu H C, Liu J M 2023 Opt. Commun. 533 129281

    [32]

    Feng L B, Lu X, Liu X L, Ge X L, Ma J L, Li Y T, Chen L M, D Q L, Wang W M, Teng H, Wang Z H, Sheng Z M, Wei Z Y, He D W, Zhang J 2021 Acta Phys. Sin. 61 174206

  • [1] 廉振中, 洪倩倩, 贾利娟, 孟建桥, 束传存. 飞秒激光诱导分子准直相干性的度量分析. 物理学报, doi: 10.7498/aps.74.20241400
    [2] 李艳玲, 梅海平, 任益充, 张骏昕, 陶志炜, 艾则孜姑丽·阿不都克热木, 刘世韦. 湍流大气中随机粗糙表面激光回波空间相干性仿真. 物理学报, doi: 10.7498/aps.71.20212420
    [3] 周博睿, 谈宜东, 沈学举, 朱开毅, 鲍丽萍. 微泡造影剂增强超声调制激光回馈成像对比度的机理研究. 物理学报, doi: 10.7498/aps.68.20190770
    [4] 吴元庆, 王洋, 张延涛, 张宇峰, 刘春梅. 对比度阈值函数修正对于NVThermIP模型的影响. 物理学报, doi: 10.7498/aps.67.20180493
    [5] 范启蒙, 尹成友. 高对比度目标的电磁逆散射超分辨成像. 物理学报, doi: 10.7498/aps.67.20180266
    [6] 田恒, 朱京平, 张云尧, 管今哥, 侯洵. 浑浊介质中图像对比度与成像方式的关系. 物理学报, doi: 10.7498/aps.65.084201
    [7] 满天龙, 万玉红, 江竹青, 王大勇, 陶世荃. 孪生光束干涉法测量光源的空间相干性. 物理学报, doi: 10.7498/aps.62.214203
    [8] 李玉叶, 贾冰, 古华光. 白噪声诱发Morris-Lecar模型构成的Ⅱ型兴奋网络产生多次空间相干共振. 物理学报, doi: 10.7498/aps.61.070504
    [9] 孟祥富, 王琛, 安红海, 贾果, 方智恒, 周华珍, 孙今人, 王伟, 傅思祖. 驱动激光束间相干性以及对背向散射影响的研究. 物理学报, doi: 10.7498/aps.61.185202
    [10] 王华, 闫帅, 闫芬, 蒋升, 毛成文, 梁东旭, 杨科, 李爱国, 余笑寒. 上海同步辐射装置波荡器光源空间相干性的研究. 物理学报, doi: 10.7498/aps.61.144102
    [11] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响. 物理学报, doi: 10.7498/aps.59.4634
    [12] 肖 瑞, 侯 静, 姜宗福. 激光器阵列的部分相干性对相干合成远场输出特性的影响. 物理学报, doi: 10.7498/aps.57.853
    [13] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, doi: 10.7498/aps.57.2607
    [14] 韩俊鹤, 姚保利, 郜 鹏, 陈利菊, 王英利, 雷 铭. 不同记录光强下辅助紫光对菌紫质薄膜全息衍射效率的影响. 物理学报, doi: 10.7498/aps.57.2199
    [15] 王 华, 王向朝, 曾爱军, 杨 坤. 大气湍流对斜程传输准单色高斯-谢尔光束空间相干性的影响. 物理学报, doi: 10.7498/aps.57.634
    [16] 肖 瑞, 周 朴, 侯 静, 姜宗福, 刘 明. 激光器的部分相干性对光纤激光器阵列相干合成远场图样的影响. 物理学报, doi: 10.7498/aps.56.819
    [17] 易煦农, 胡 巍, 罗海陆, 朱 静. 用高阶对比度研究光束的小尺度自聚焦. 物理学报, doi: 10.7498/aps.54.749
    [18] 印建平, 朱士群, 高伟建, 王育竹. 双模激光场的二阶量子相干性及其时谱特性. 物理学报, doi: 10.7498/aps.44.72
    [19] 倪光炯, 陈苏卿, 周谷声. 辐射的相干性和熵的增加. 物理学报, doi: 10.7498/aps.31.585
    [20] 王之江. 电磁辐射的相干性. 物理学报, doi: 10.7498/aps.19.320
计量
  • 文章访问数:  48
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-17

/

返回文章
返回