搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光脉冲对N2分子非绝热准直的调控

郑悦 张宇璇 孙少华 丁鹏基 胡碧涛 刘作业

引用本文:
Citation:

飞秒激光脉冲对N2分子非绝热准直的调控

郑悦, 张宇璇, 孙少华, 丁鹏基, 胡碧涛, 刘作业

Modulation of non-adiabatic alignment of N2 molecule by femtosecond laser pulses

Zheng Yue, Zhang Yu-Xuan, Sun Shao-Hua, Ding Peng-Ji, Hu Bi-Tao, Liu Zuo-Ye
PDF
HTML
导出引用
  • 介质内分子在飞秒激光场中的准直会诱导介质内部折射率发生变化并产生光谱调制效应. 本文实验上采用泵浦-探测方法测量了N2中探测光波长偏移量的时间演化, 提取了N2分子的准直度信息; 理论上通过求解含时薛定谔方程, 计算了分子非绝热准直的时间演化, 探究了分子非绝热准直和克尔效应两种机制共同影响所诱导的双折射效应对探测光光谱的调制作用. 实验和理论结果符合良好, 证实了光谱测量法可以用来表征分子的准直度. 进一步采用双脉冲泵浦方式对分子准直进行调控, 发现双脉冲泵浦可以有效增强分子的准直度. 通过调节双脉冲间的延迟时间, 即在分子的一个转动恢复周期及半个转动恢复周期处引入第二束泵浦脉冲, 可以分别控制分子准直的增强与消失, 起到“准直开关”的作用. 双脉冲调控方式同样适用于其他多个分子体系, 具有一定的普适性.
    The alignment of molecules in the femtosecond laser field induces the refractive index of the propagation medium to change, resulting in the spectral modulation effect. In this paper, the time evolution of the wavelength offset of a probe laser pulse under the influence of the non-adiabatic molecular alignment and Kerr effect is measured experimentally by the pump-probe method in nitrogen medium, and the alignment degree of N2 molecules is obtained. By solving the time-dependent Schrödinger equation theoretically, the expression of the degree of molecular non-adiabatic alignment is obtained, and the time evolution of non-adiabatic alignment of N2 molecules is calculated. Taking into account the combined influence of the non-adiabatic molecular alignment and Kerr effect on the change of refractive index of the propagation medium, the modulation effect of birefringence on the spectrum of the probe pulse is achieved. The experimental result accords well with the theoretical calculation, demonstrating that the spectral modulation results obtained by experimental measurement can be used to characterize the alignment degree. Further, the double pulse pump method is used to control the degree of molecular alignment. It is found that the degree of molecular alignment can be enhanced by the double pulse pump method. Moreover, by adjusting the delay time between the two pump laser pulses, that is, adding the second pump laser pulse at one rotational period and half rotational period, respectively, the enhancement and loss of the alignment of N2 molecules can be achieved, which is named the “alignment switch” effect. The molecular alignment control induced by the double pulse pump method can also be applied to the other molecular systems with different alignment and anti-alignment times, such as CO2 molecules and O2 molecules, indicating that the double pulse pump method can be used universally.
      通信作者: 孙少华, sunshaohua@lzu.edu.cn ; 刘作业, zyl@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:12027809)、中央高校基本科研业务费专项资金(批准号: lzujbky-2022-ey05)和北京大学核物理与核技术国家重点实验室开放课题(批准号: NPT2020KFY17)资助的课题.
      Corresponding author: Sun Shao-Hua, sunshaohua@lzu.edu.cn ; Liu Zuo-Ye, zyl@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12027809), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. lzujbky-2022-ey05), and the Open Project of State Key Laboratory of Nuclear Physics and Technology, Peking University, China (Grant No. NPT2020KFY17).
    [1]

    Zon B A, Katsnelson B G 1975 Zh. Eksp. Teor. Fiz. 69 1166Google Scholar

    [2]

    Litvinyuk I V, Lee K F, Dooley P W, Rayner D M, Villeneuve D M, Corkum P B 2003 Phys. Rev. Lett. 90 233003Google Scholar

    [3]

    Cai H, Wu J, Couairon A, Zeng H 2009 Opt. Lett. 34 827Google Scholar

    [4]

    Feng Y H, Pan H F, Liu J, Chen C, Wu J, Zeng H P 2011 Opt. Express 19 2852Google Scholar

    [5]

    Marceau C, Chen Y P, Théberge F, Châteauneuf M, Dubois J, Chin S L 2009 Opt. Lett. 34 1417Google Scholar

    [6]

    Yu Z Q, Su Q, Zhang N, Gao H, Zhang Z, Chu C Y, Xu Q, Zhang Y, Liu W W 2021 Opt. Laser Technol. 141 107179Google Scholar

    [7]

    Kaya N, Kaya G, Boran Y, Kolomenski A, Schuessler H A 2021 Optik 242 167360Google Scholar

    [8]

    Akagi H, Kumada T, Otobe T, Itakura R, Hasegawa H, Ohshima Y 2018 Appl. Phys. B 124 14Google Scholar

    [9]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867Google Scholar

    [10]

    Gordon R J, Zhu L, Schroeder W A, Seideman T 2003 J. Appl. Phys. 94 669Google Scholar

    [11]

    Guo X L, Jin C, He Z Q, Yao J P, Zhou X X, Cheng Y 2021 Opt. Express 29 1613Google Scholar

    [12]

    Qin M Y, Zhu X S 2017 Opt. Laser Technol. 87 79Google Scholar

    [13]

    Zhai C, Zhang X, Zhu X, He L, Zhang Y, Wang B, Zhang Q, Lan P, Lu P 2018 Opt. Express 26 2775Google Scholar

    [14]

    Wang J, Liu A H, Yuan K J 2020 Opt. Commun 460 125216Google Scholar

    [15]

    Jiang C Z, Jiang H R, Chen Y B, Li B C, Lin C D, Jin C 2022 Phys. Rev. A 105 023111Google Scholar

    [16]

    Yang Z, Cao W, Mo Y, Xu H, Mi K, Lan P, Zhang Q, Lu P 2021 Natl. Sci. Rev. 8 nwaa211Google Scholar

    [17]

    Jin C, Wang S J, Zhao S F, Le A T, Lin C D 2020 Phys. Rev. A 102 013108Google Scholar

    [18]

    He Y, He L, Lan P, Wang B, Li L, Zhu X, Cao W, Lu P 2019 Phys. Rev. A 99 053419Google Scholar

    [19]

    Bisgaard C Z, Poulsen M D, Péronne E, Viftrup S S, Stapelfeldt H 2004 Phys. Rev. Lett. 92 173004Google Scholar

    [20]

    Ma Z R, Zou X, Zhao L R, Qi F F, Jiang T, Zhu P F, Xiang D, Zhang J 2022 Proc. Natl. Acad. Sci. 119 e2122793119Google Scholar

    [21]

    Langevin D, Brown J M, Gaarde M B, Couairon A 2019 Phys. Rev. A 99 063418Google Scholar

    [22]

    Wang Q J, Chen R, Zhao J C, Sun C L, Wang X Z, Ding J J, Liu Z Y, Hu B T 2020 Chin. Phys. B 29 013301Google Scholar

    [23]

    Ding J J, Ding P J, Liu Z Y, Hu B T 2016 Sci. Chin. Phy. Mech. Astron. 59 633001Google Scholar

    [24]

    Yuan S, Li M, Feng Y, Li H, Zheng L, Chin S L, Zeng H 2015 J. Phys. B: At. Mol. Opt. Phys. 48 094018Google Scholar

    [25]

    Loriot V, Hertz E, Faucher O, Lavorel B 2010 Opt. Express 18 3011Google Scholar

    [26]

    Boyd R W 2020 Nonlinear Optics (4th Ed.) (New York: Academic Press) p358

    [27]

    Kumarappan V, Bisgaard C Z, Viftrup S S, Holmegaard L, Stapelfeldt H 2006 J. Chem. Phys. 125 194309Google Scholar

    [28]

    Averbukh I S, Arvieu R 2001 Phys. Rev. Lett. 87 163601Google Scholar

    [29]

    Karamatskos E T, Raabe S, Mullins T, Trabattoni, Stammer P, Goidsztejn G, Johansen R R, Dlugolecki K, Stapelfeldt H, Vrakking M J J, Trippel S, Rouzée A, Küpper J 2019 Nat. Commun. 10 3364Google Scholar

  • 图 1  N2分子非绝热准直的时间演化

    Fig. 1.  Time evolution of non-adiabatic alignment of N2 molecules.

    图 2  实验装置示意图 (HR, 高反射镜; DM, 二向色镜)

    Fig. 2.  Schematic diagram of the experimental setup (HR, high reflectivity mirror; DM, dichroic mirror).

    图 3  光谱调制的时间演化 (a) 实验测量的探测激光光谱; (b) 探测激光的平均波长

    Fig. 3.  Time evolution of spectral modulation: (a) Probe laser spectra measured experimentally; (b) the average wavelength of the probe laser.

    图 4  探测激光波长偏移量的时间演化 (a) 理论计算; (b) 实验测量

    Fig. 4.  Time evolution of the probe laser’s wavelength offset: (a) Theoretical calculation; (b) experimental measurement.

    图 5  延迟时间为8.4 ps的双脉冲泵浦与单脉冲泵浦下N2分子准直度的时间演化 (a) 激光功率密度为3×1013 W/cm2的单脉冲泵浦; (b) 激光功率密度为6×1013 W/cm2的单脉冲泵浦

    Fig. 5.  Time evolution of alignment of N2 molecules for double pulses pumping with a delay of 8.4 ps and single-pulse pumping: (a) Single-pulse pumping with the same laser power density; (b) single-pulse pumping with double laser power density.

    图 6  延迟时间为4.2 ps的双脉冲泵浦与单脉冲泵浦下N2分子准直度的时间演化

    Fig. 6.  Time evolution of alignment of N2 molecules for double pulses pumping with a delay of 4.2 ps and single pulse pumping.

    图 7  不同延迟时间的双脉冲泵浦与单脉冲泵浦下CO2和O2 的准直度的时间演化 (a), (b) CO2分子体系; (c), (d) O2分子体系

    Fig. 7.  Time evolution of the alignment degree of CO2 molecules and O2 molecules for double pulse pump with different delays and single pulse pump: (a), (b) Molecular system of CO2; (c), (d) molecular system of O2.

  • [1]

    Zon B A, Katsnelson B G 1975 Zh. Eksp. Teor. Fiz. 69 1166Google Scholar

    [2]

    Litvinyuk I V, Lee K F, Dooley P W, Rayner D M, Villeneuve D M, Corkum P B 2003 Phys. Rev. Lett. 90 233003Google Scholar

    [3]

    Cai H, Wu J, Couairon A, Zeng H 2009 Opt. Lett. 34 827Google Scholar

    [4]

    Feng Y H, Pan H F, Liu J, Chen C, Wu J, Zeng H P 2011 Opt. Express 19 2852Google Scholar

    [5]

    Marceau C, Chen Y P, Théberge F, Châteauneuf M, Dubois J, Chin S L 2009 Opt. Lett. 34 1417Google Scholar

    [6]

    Yu Z Q, Su Q, Zhang N, Gao H, Zhang Z, Chu C Y, Xu Q, Zhang Y, Liu W W 2021 Opt. Laser Technol. 141 107179Google Scholar

    [7]

    Kaya N, Kaya G, Boran Y, Kolomenski A, Schuessler H A 2021 Optik 242 167360Google Scholar

    [8]

    Akagi H, Kumada T, Otobe T, Itakura R, Hasegawa H, Ohshima Y 2018 Appl. Phys. B 124 14Google Scholar

    [9]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867Google Scholar

    [10]

    Gordon R J, Zhu L, Schroeder W A, Seideman T 2003 J. Appl. Phys. 94 669Google Scholar

    [11]

    Guo X L, Jin C, He Z Q, Yao J P, Zhou X X, Cheng Y 2021 Opt. Express 29 1613Google Scholar

    [12]

    Qin M Y, Zhu X S 2017 Opt. Laser Technol. 87 79Google Scholar

    [13]

    Zhai C, Zhang X, Zhu X, He L, Zhang Y, Wang B, Zhang Q, Lan P, Lu P 2018 Opt. Express 26 2775Google Scholar

    [14]

    Wang J, Liu A H, Yuan K J 2020 Opt. Commun 460 125216Google Scholar

    [15]

    Jiang C Z, Jiang H R, Chen Y B, Li B C, Lin C D, Jin C 2022 Phys. Rev. A 105 023111Google Scholar

    [16]

    Yang Z, Cao W, Mo Y, Xu H, Mi K, Lan P, Zhang Q, Lu P 2021 Natl. Sci. Rev. 8 nwaa211Google Scholar

    [17]

    Jin C, Wang S J, Zhao S F, Le A T, Lin C D 2020 Phys. Rev. A 102 013108Google Scholar

    [18]

    He Y, He L, Lan P, Wang B, Li L, Zhu X, Cao W, Lu P 2019 Phys. Rev. A 99 053419Google Scholar

    [19]

    Bisgaard C Z, Poulsen M D, Péronne E, Viftrup S S, Stapelfeldt H 2004 Phys. Rev. Lett. 92 173004Google Scholar

    [20]

    Ma Z R, Zou X, Zhao L R, Qi F F, Jiang T, Zhu P F, Xiang D, Zhang J 2022 Proc. Natl. Acad. Sci. 119 e2122793119Google Scholar

    [21]

    Langevin D, Brown J M, Gaarde M B, Couairon A 2019 Phys. Rev. A 99 063418Google Scholar

    [22]

    Wang Q J, Chen R, Zhao J C, Sun C L, Wang X Z, Ding J J, Liu Z Y, Hu B T 2020 Chin. Phys. B 29 013301Google Scholar

    [23]

    Ding J J, Ding P J, Liu Z Y, Hu B T 2016 Sci. Chin. Phy. Mech. Astron. 59 633001Google Scholar

    [24]

    Yuan S, Li M, Feng Y, Li H, Zheng L, Chin S L, Zeng H 2015 J. Phys. B: At. Mol. Opt. Phys. 48 094018Google Scholar

    [25]

    Loriot V, Hertz E, Faucher O, Lavorel B 2010 Opt. Express 18 3011Google Scholar

    [26]

    Boyd R W 2020 Nonlinear Optics (4th Ed.) (New York: Academic Press) p358

    [27]

    Kumarappan V, Bisgaard C Z, Viftrup S S, Holmegaard L, Stapelfeldt H 2006 J. Chem. Phys. 125 194309Google Scholar

    [28]

    Averbukh I S, Arvieu R 2001 Phys. Rev. Lett. 87 163601Google Scholar

    [29]

    Karamatskos E T, Raabe S, Mullins T, Trabattoni, Stammer P, Goidsztejn G, Johansen R R, Dlugolecki K, Stapelfeldt H, Vrakking M J J, Trippel S, Rouzée A, Küpper J 2019 Nat. Commun. 10 3364Google Scholar

  • [1] 刘建鑫, 赵刚, 周月婷, 周晓彬, 马维光. 高反射腔镜双折射效应对腔增强光谱技术的影响. 物理学报, 2022, 71(8): 084202. doi: 10.7498/aps.71.20212090
    [2] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性. 物理学报, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [3] 牛海莎, 祝连庆, 宋建军, 董明利, 娄小平. 激光器内腔频差对双折射外腔激光回馈系统输出影响的理论及实验研究. 物理学报, 2018, 67(15): 154201. doi: 10.7498/aps.67.20180230
    [4] 李长胜, 陈佳. 去除光学器件弹光双折射的方法. 物理学报, 2016, 65(3): 037801. doi: 10.7498/aps.65.037801
    [5] 张永伟, 殷春浩, 赵强, 李富强, 朱姗姗, 刘海顺. TiO2电子结构与其双折射性、各向异性关联的理论研究. 物理学报, 2012, 61(2): 027801. doi: 10.7498/aps.61.027801
    [6] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [7] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [8] 朱丽丹, 孙方远, 祝捷, 唐大伟. 飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究. 物理学报, 2012, 61(13): 134402. doi: 10.7498/aps.61.134402
    [9] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤. 物理学报, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [10] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究. 物理学报, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [11] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤. 物理学报, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [12] 汪静丽, 姚建铨, 陈鹤鸣, 邴丕彬, 李忠洋, 钟凯. 高双折射的混合格子太赫兹光子晶体光纤的设计与研究. 物理学报, 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [13] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤. 物理学报, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [14] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [15] 赵红敏, 王鹿霞. 异质结中桥分子电子转移的飞秒激光控制研究. 物理学报, 2009, 58(2): 1332-1337. doi: 10.7498/aps.58.1332
    [16] 延凤平, 李一凡, 王 琳, 龚桃荣, 刘 鹏, 刘 洋, 陶沛琳, 曲美霞, 简水生. 近椭圆内包层高双折射偏振稳定光子晶体光纤设计及特性分析. 物理学报, 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
    [17] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [18] 李曙光, 邢光龙, 周桂耀, 侯蓝田. 空气孔正方形排列的低损耗高双折射光子晶体光纤的数值模拟. 物理学报, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
    [19] 贾维国, 杨性愉. 强双折射光纤中任意偏振方向矢量调制不稳定性. 物理学报, 2005, 54(3): 1053-1058. doi: 10.7498/aps.54.1053
    [20] 祁胜文, 杨秀芹, 陈 宽, 张春平, 张连顺, 王新宇, 许 棠, 柳永亮, 张光寅. 偶氮材料——乙基橙的光致双折射特性. 物理学报, 2005, 54(7): 3189-3193. doi: 10.7498/aps.54.3189
计量
  • 文章访问数:  3494
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 修回日期:  2022-12-31
  • 上网日期:  2023-01-07
  • 刊出日期:  2023-03-20

/

返回文章
返回