搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时间延迟双色飞秒激光中$\text{H}_2^+$的解离动力学研究

王景哲 董福龙 刘杰

引用本文:
Citation:

时间延迟双色飞秒激光中$\text{H}_2^+$的解离动力学研究

王景哲, 董福龙, 刘杰
cstr: 32037.14.aps.73.20241283

Dissociation dynamic study of $\text{H}_2^+$ in time-delayed two-color femtosecond lasers

Wang Jing-Zhe, Dong Fu-Long, Liu Jie
cstr: 32037.14.aps.73.20241283
PDF
HTML
导出引用
  • 通过数值求解薛定谔方程, 计算了具有时间延迟的泵浦及探测飞秒激光联合作用下氢分子离子解离的时间演化动力学. 研究发现, 通过调节探测光的脉宽长度可以对解离过程进行有效的操控; 同时, 结合延迟时间依赖的离子解离动能谱, 可以反演出解离过程中的电子与核的微观动力学行为. 另外, 基于能动量守恒发展了一个描述解离动力学的经典模型, 该模型能够定性地预言延迟时间依赖的解离动能谱. 利用离子动能谱对探测光频率的依赖关系, 提出了一个重构离子核间距的含时演化的方案.
    In recent years, the rapid development of ultrashort pulse laser technology has made it possible to regulate the ionization and dissociation dynamics of atoms and molecules. Among them, the microscopic dynamics of molecular dissociation have always been a hot topic. The phenomenon of molecular dissociation, which is caused by the interaction between femtosecond intense laser fields and $\text{H}_2^+$ molecules, has attracted widespread attention. Previous theoretical studies on the dissociation of $\text{H}_2^+$ molecules mainly focused on studying its dissociation dynamics through numerical calculations, with relatively few theoretical models. This paper aims to establish a simple classical model to describe the dissociation dynamics. Firstly, this paper calculates the joint distribution of nuclear energy and electronic energy in the dissociation process of $\text{H}_2^+$ molecules under the action of pump lasers by numerically solving the Schrödinger equation. The results prove that $\text{H}_2^+$ molecules initially in the ground state are dissociated into ${\rm H}^+ + {\rm H}^*$ after absorbing a pump photon in the pump light field. Next, this paper studies the dissociation dynamics of $\text{H}_2^+$ molecules in time-delayed two-color femtosecond lasers. We find that it greatly depends on the specific forms of the pump light and the probe light. By utilizing the dependence of the dissociation kinetic energy release (KER) spectrum on the time delay of the two-color femtosecond lasers, we retrieve the sub-attosecond microscopic dynamic behaviors of electrons and atomic nuclei in the dissociation process. Furthermore, we establish a classical model based on the conservation of energy and momentum to describe the dissociation dynamics. This model can qualitatively predict the ion dissociation KER spectrum depending on the time delay of the two-color femtosecond lasers. The electronic resonant transition between the molecular ground state and the first excited state caused by the probe light will affect the ion kinetic energy spectrum in the dissociation process. Namely, the ion kinetic energy spectrum is dependent on the frequency of the probe laser. By taking advantage of this characteristic, we propose a scheme to reconstruct the evolution of the internuclear distance with time. Our reconstruction results can qualitatively predict the trend of the numerical simulation results, and this scheme may provide some theoretical guidance for experiments.
      通信作者: 董福龙, fldonghb@126.com ; 刘杰, jliu@gscaep.ac.cn
    • 基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: U1930403)和国家自然科学基金(批准号: 12022513, 12404394) 资助的课题.
      Corresponding author: Dong Fu-Long, fldonghb@126.com ; Liu Jie, jliu@gscaep.ac.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1930403) and the National Natural Science Foundation of China (Grant Nos. 12022513, 12404394).
    [1]

    Alnaser A S, Tong X M, Osipov T, et al. 2004 Phys. Rev. A 93 183202Google Scholar

    [2]

    Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H, Sandner W 2009 Phys. Rev. Lett. 102 113002Google Scholar

    [3]

    Mi Y H, Peng P, Camus N, et al. 2020 Phys. Rev. Lett. 125 173201Google Scholar

    [4]

    Pan S Z, Zhang W B, Li H, et al. 2021 Phys. Rev. Lett. 126 063201Google Scholar

    [5]

    Guo Z N, Zhang Z H, Deng Y K, Wang J G, Ye D F, Liu J, Liu Y Q 2024 Phys. Rev. Lett. 132 143201Google Scholar

    [6]

    张颖, 王兴, 徐忠锋, 任洁茹, 张艳宁, 周贤明, 梁昌慧, 张小安 2024 物理学报 73 023101Google Scholar

    Zhang Y, Wang X, Xu Z F, Ren J R, Zhang Y N, Zhou X M, Liang C H, Zhang X A 2024 Acta Phys. Sin. 73 023101Google Scholar

    [7]

    骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉 2024 物理学报 73 044101Google Scholar

    Luo Y, Yu X, Lei J T, Tao C Y, Zhang S F, Zhu X L, Ma X W, Yan S C, Zhao X H 2024 Acta Phys. Sin. 73 044101Google Scholar

    [8]

    Jin W W, Wang C C, Zhao X G, et al. 2024 Chin. Phys. Lett. 41 053101Google Scholar

    [9]

    Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 2019 Phys. Rev. Lett. 64 1883Google Scholar

    [10]

    Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F, Langley A J 1999 Phys. Rev. Lett. 83 3625Google Scholar

    [11]

    Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845Google Scholar

    [12]

    Posthumus J H, Plumridge J, Frasinski L J, et al. 2000 J. Phys. B: At. Mol. Opt. Phys. 33 L563Google Scholar

    [13]

    Niikura H, Légaré F, Hasbani R, Ivanov M Y, Villeneuve D M, Corkum P B 2003 Nature 421 826Google Scholar

    [14]

    Staudte A, Pavičić D, Chelkowski S, et al. 2007 Phys. Rev. Lett. 98 073003Google Scholar

    [15]

    Xu H, Li Zhi C, He F, Wang X, Atia T N A, Kielpinski D, Sang R T, Litvinyuk I V 2017 Nat. Commun. 8 15849Google Scholar

    [16]

    Hanus V, Kangaparambil S, Larimian S, et al. 2019 Phys. Rev. Lett. 123 263201Google Scholar

    [17]

    Li X K, Yu X T, Ma P, Zhao X N, Wang C C, Luo S Z, Ding D J 2022 Chin. Phys. B 31 103304Google Scholar

    [18]

    Leth H A, Madsen L B, Mølmer K 2010 Phys. Rev. A 81 053409Google Scholar

    [19]

    Leth H A, Madsen L B, Mølmer K 2010 Phys. Rev. A 81 053410Google Scholar

    [20]

    Liu K L, Barth I 2021 Phys. Rev. A 103 013103Google Scholar

    [21]

    Sami F, Vafaee M, Shokri B 2016 J. Phys. B: At. Mol. Opt. Phys. 44 165601Google Scholar

    [22]

    Zhao M M, Li L H, Si B W, Wang B B, Fu B N, Han Y C 2022 Chin. Phys. Lett. 39 083401Google Scholar

    [23]

    Hu T C, Zhu S K, Zhao Y N, et al. 2022 Chin. Phys. B 31 047901Google Scholar

    [24]

    Pavicic D, Kiess A, Hansch T W, Figger H 2005 Phys. Rev. Lett. 94 163002Google Scholar

    [25]

    Magrakvelidze M, He F, Niederhausen T, Litvinyuk I V, Thumm U 2009 Phys. Rev. A 79 033410Google Scholar

    [26]

    Kling M F, Siedschlag C, Verhoef A J, et al. 2006 Science 312 246Google Scholar

    [27]

    Esry B D, Sayler A M, Wang P Q, Carnes K D, BenItzhak I 2006 Phys. Rev. Lett. 97 013003Google Scholar

    [28]

    Guo W, Lu X Q, Zhao D, Wang X L 2014 Phys. Scr. 89 025401Google Scholar

    [29]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [30]

    Feng L Q 2015 Phys. Rev. A 92 053832Google Scholar

    [31]

    Roudnev V, Esry B D, Itzhak I B 2004 Phys. Rev. Lett. 93 163601Google Scholar

    [32]

    Gibson G N, Li M, Guo C, Neira J 1997 Phys. Rev. Lett. 79 2022Google Scholar

    [33]

    Alnaser A S, Ulrich B, Tong X M, et al. 2005 Phys. Rev. A 72 030702Google Scholar

    [34]

    Hua J J, Esry B D 2009 Phys. Rev. A 80 013413Google Scholar

    [35]

    Benis E P, Bakarezos M, Papadogiannis N A, et al. 2012 Phys. Rev. A 86 043428Google Scholar

    [36]

    Hu H T, Xu H, Bai Y, Sang R T, Litvinyuk I V, Liu P, Li R X 2016 Phys. Rev. A 94 053415Google Scholar

    [37]

    Fischer B, Kremer M, Pfeifer T, et al. 2010 Phys. Rev. Lett. 105 223001Google Scholar

    [38]

    Jia Z M, Zeng Z N, Li R X, Xu Z Z, Deng Y P 2014 Phys. Rev. A 89 023419Google Scholar

    [39]

    Zhang J, Pan X F, Du H, Xu T T, Guo J, Liu X S 2017 Opt. Commun. 382 495Google Scholar

    [40]

    Liu K L, Zhang Q B, Lu P X 2012 Phys. Rev. A 86 033410Google Scholar

    [41]

    Wanie V 2016 J. Phys. B: At. Mol. Opt. Phys. 49 025601Google Scholar

    [42]

    Balint K G G 2015 Theory of Molecular Collisions (Cambridge: Royal Society of Chemistry

    [43]

    Lu R F, Zhang P Y, Han K L 2008 Phys. Rev. E 77 066701Google Scholar

    [44]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221 148Google Scholar

    [45]

    Feit M D, Fleck Jr J A, Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

  • 图 1  不同电子本征态对应的核间距依赖的分子势能面

    Fig. 1.  Molecular potential energy surfaces as a function of the internuclear distance for different electronic eigenstates.

    图 2  单色泵浦光作用下解离动力学稳定时的核动能与电子能量的联合分布

    Fig. 2.  Joint distribution of the nuclear and electron energy after the dissociation caused by the monochromatic pump laser.

    图 3  序列双色激光中$\text{H}_2^+$的延迟时间依赖的离子解离动能谱 (a)经(10)式计算所得的$\text{H}_2^+$的离子解离动能谱, 其中探测光$\tau_{2}=2 T_{2}$, $\lambda_{2}=580$ nm; (b)—(d) 与(a)相同, 区别仅在于探测光脉冲时间为$\tau_{2}=4 T_{2},\;6 T_{2} 和8 T_{2}$. 图中实线是经典模型的计算结果

    Fig. 3.  Time-dependent dissociation kinetic energy spectra of $\text{H}_2^+$ in sequential two-color femtosecond lasers: (a) The dissociation kinetic energy spectra of $\text{H}_2^+$ calculated by Eq. (10), in which $\tau_{2}=2 T_{2}$ and $\lambda_{2}=580$ nm; (b)−(d) the same as panel (a), but $\tau_{2}=4 T_{2},\;6 T_{2}和8 T_{2}$, respectively. The solid lines are the results calculated by the classical model.

    图 4  (10)式计算得到的不同探测光波长下$\text{H}_2^+$的延迟时间依赖的离子解离动能谱 (a)探测光脉冲时间为$\tau_{2}=6 T_{2}$, 波长为$\lambda_{2}=180$ nm; (b)—(d)与(a)相同, 区别仅在于探测光波长为$\lambda_{2}=288,\;410,\;580\;{\mathrm{nm}}$

    Fig. 4.  Dissociation KER spectra calculated by Eq. (10) as a function of $t_{\rm{d}}$: (a) $\tau_{2}=6 T_{2}$ and $\lambda_{2}=180$ nm; (b)−(d) the same as (a), but $\lambda_{2}=288,\;410,\;580\;{\mathrm{nm}}$, respectively.

    图 5  利用动能谱重构的核间距的时间演化与数值结果对比

    Fig. 5.  Comparison between the reconstructed time evolution of the internuclear distance and the numerical simulation results.

    表 1  利用波长依赖的动能谱重构出的$\text{H}_2^+$解离过程中核间距的时间演化

    Table 1.  Reconstructed time evolution of the internuclear distance in the dissociation process of $\text{H}_2^+$ utilizing the wavelength-dependence KER spectra.

    $\lambda_{2}/{\rm{nm}}$ $\omega_{2}/{\rm{a.u.}}$ $R/{\rm{a.u.}}$ $t_{\rm{d}}/{\rm{a.u.}}$ $t=t_{\rm{d}}+T_{2}$ $ \langle t \rangle $ $\Delta t$ $ \langle R \rangle $ $\Delta R$
    $180$ [0.21093, 0.2953] $[2.5, 3.05]$ $[0, 20]$ $[25, 45]$ $35$ $10$ $2.75$ $0.25$
    $288$ [0.13183, 0.18456] $[3.3, 3.85]$ $[0, 47]$ $[40, 87]$ $63.5$ $23.5$ $3.6$ $0.3$
    $410$ [0.0926, 0.12964] $[3.9, 4.45]$ $[0, 60]$ $[57, 117]$ $87$ $30$ $4.2$ $0.3$
    $580$ [0.06546, 0.09164] $[4.45, 5.0]$ $[20, 70]$ $[100, 150]$ $125$ $25$ $4.7$ $0.3$
    下载: 导出CSV
  • [1]

    Alnaser A S, Tong X M, Osipov T, et al. 2004 Phys. Rev. A 93 183202Google Scholar

    [2]

    Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H, Sandner W 2009 Phys. Rev. Lett. 102 113002Google Scholar

    [3]

    Mi Y H, Peng P, Camus N, et al. 2020 Phys. Rev. Lett. 125 173201Google Scholar

    [4]

    Pan S Z, Zhang W B, Li H, et al. 2021 Phys. Rev. Lett. 126 063201Google Scholar

    [5]

    Guo Z N, Zhang Z H, Deng Y K, Wang J G, Ye D F, Liu J, Liu Y Q 2024 Phys. Rev. Lett. 132 143201Google Scholar

    [6]

    张颖, 王兴, 徐忠锋, 任洁茹, 张艳宁, 周贤明, 梁昌慧, 张小安 2024 物理学报 73 023101Google Scholar

    Zhang Y, Wang X, Xu Z F, Ren J R, Zhang Y N, Zhou X M, Liang C H, Zhang X A 2024 Acta Phys. Sin. 73 023101Google Scholar

    [7]

    骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉 2024 物理学报 73 044101Google Scholar

    Luo Y, Yu X, Lei J T, Tao C Y, Zhang S F, Zhu X L, Ma X W, Yan S C, Zhao X H 2024 Acta Phys. Sin. 73 044101Google Scholar

    [8]

    Jin W W, Wang C C, Zhao X G, et al. 2024 Chin. Phys. Lett. 41 053101Google Scholar

    [9]

    Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 2019 Phys. Rev. Lett. 64 1883Google Scholar

    [10]

    Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F, Langley A J 1999 Phys. Rev. Lett. 83 3625Google Scholar

    [11]

    Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845Google Scholar

    [12]

    Posthumus J H, Plumridge J, Frasinski L J, et al. 2000 J. Phys. B: At. Mol. Opt. Phys. 33 L563Google Scholar

    [13]

    Niikura H, Légaré F, Hasbani R, Ivanov M Y, Villeneuve D M, Corkum P B 2003 Nature 421 826Google Scholar

    [14]

    Staudte A, Pavičić D, Chelkowski S, et al. 2007 Phys. Rev. Lett. 98 073003Google Scholar

    [15]

    Xu H, Li Zhi C, He F, Wang X, Atia T N A, Kielpinski D, Sang R T, Litvinyuk I V 2017 Nat. Commun. 8 15849Google Scholar

    [16]

    Hanus V, Kangaparambil S, Larimian S, et al. 2019 Phys. Rev. Lett. 123 263201Google Scholar

    [17]

    Li X K, Yu X T, Ma P, Zhao X N, Wang C C, Luo S Z, Ding D J 2022 Chin. Phys. B 31 103304Google Scholar

    [18]

    Leth H A, Madsen L B, Mølmer K 2010 Phys. Rev. A 81 053409Google Scholar

    [19]

    Leth H A, Madsen L B, Mølmer K 2010 Phys. Rev. A 81 053410Google Scholar

    [20]

    Liu K L, Barth I 2021 Phys. Rev. A 103 013103Google Scholar

    [21]

    Sami F, Vafaee M, Shokri B 2016 J. Phys. B: At. Mol. Opt. Phys. 44 165601Google Scholar

    [22]

    Zhao M M, Li L H, Si B W, Wang B B, Fu B N, Han Y C 2022 Chin. Phys. Lett. 39 083401Google Scholar

    [23]

    Hu T C, Zhu S K, Zhao Y N, et al. 2022 Chin. Phys. B 31 047901Google Scholar

    [24]

    Pavicic D, Kiess A, Hansch T W, Figger H 2005 Phys. Rev. Lett. 94 163002Google Scholar

    [25]

    Magrakvelidze M, He F, Niederhausen T, Litvinyuk I V, Thumm U 2009 Phys. Rev. A 79 033410Google Scholar

    [26]

    Kling M F, Siedschlag C, Verhoef A J, et al. 2006 Science 312 246Google Scholar

    [27]

    Esry B D, Sayler A M, Wang P Q, Carnes K D, BenItzhak I 2006 Phys. Rev. Lett. 97 013003Google Scholar

    [28]

    Guo W, Lu X Q, Zhao D, Wang X L 2014 Phys. Scr. 89 025401Google Scholar

    [29]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [30]

    Feng L Q 2015 Phys. Rev. A 92 053832Google Scholar

    [31]

    Roudnev V, Esry B D, Itzhak I B 2004 Phys. Rev. Lett. 93 163601Google Scholar

    [32]

    Gibson G N, Li M, Guo C, Neira J 1997 Phys. Rev. Lett. 79 2022Google Scholar

    [33]

    Alnaser A S, Ulrich B, Tong X M, et al. 2005 Phys. Rev. A 72 030702Google Scholar

    [34]

    Hua J J, Esry B D 2009 Phys. Rev. A 80 013413Google Scholar

    [35]

    Benis E P, Bakarezos M, Papadogiannis N A, et al. 2012 Phys. Rev. A 86 043428Google Scholar

    [36]

    Hu H T, Xu H, Bai Y, Sang R T, Litvinyuk I V, Liu P, Li R X 2016 Phys. Rev. A 94 053415Google Scholar

    [37]

    Fischer B, Kremer M, Pfeifer T, et al. 2010 Phys. Rev. Lett. 105 223001Google Scholar

    [38]

    Jia Z M, Zeng Z N, Li R X, Xu Z Z, Deng Y P 2014 Phys. Rev. A 89 023419Google Scholar

    [39]

    Zhang J, Pan X F, Du H, Xu T T, Guo J, Liu X S 2017 Opt. Commun. 382 495Google Scholar

    [40]

    Liu K L, Zhang Q B, Lu P X 2012 Phys. Rev. A 86 033410Google Scholar

    [41]

    Wanie V 2016 J. Phys. B: At. Mol. Opt. Phys. 49 025601Google Scholar

    [42]

    Balint K G G 2015 Theory of Molecular Collisions (Cambridge: Royal Society of Chemistry

    [43]

    Lu R F, Zhang P Y, Han K L 2008 Phys. Rev. E 77 066701Google Scholar

    [44]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221 148Google Scholar

    [45]

    Feit M D, Fleck Jr J A, Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

  • [1] 钟振祥. 氢分子离子超精细结构理论综述. 物理学报, 2024, 73(20): 203104. doi: 10.7498/aps.73.20241101
    [2] 郑悦, 张宇璇, 孙少华, 丁鹏基, 胡碧涛, 刘作业. 飞秒激光脉冲对N2分子非绝热准直的调控. 物理学报, 2023, 72(6): 064203. doi: 10.7498/aps.72.20222112
    [3] 俞祖卿, 杨魏吉, 何峰. H2+在强激光脉冲作用下的电离率和原子核间距的关系. 物理学报, 2016, 65(20): 204202. doi: 10.7498/aps.65.204202
    [4] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用. 物理学报, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [5] 杨青, 杜广庆, 陈烽, 吴艳敏, 欧燕, 陆宇, 侯洵. 时间整形飞秒激光诱导熔融硅表面纳米周期条纹的电子动力学研究. 物理学报, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [6] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究. 物理学报, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [7] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度. 物理学报, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [8] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强. 物理学报, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [9] 刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛. 飞秒激光低压N2等离子体特性的实验研究. 物理学报, 2013, 62(4): 045201. doi: 10.7498/aps.62.045201
    [10] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究. 物理学报, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [11] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究. 物理学报, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [12] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [13] 郭凯敏, 高勋, 薛念亮, 赵振明, 李海军, 鲁毅, 林景全. 飞秒激光等离子体单丝导电性能的空间分辨研究. 物理学报, 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [14] 唐小锋, 牛铭理, 周晓国, 刘世林. 基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究. 物理学报, 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [15] 赵红敏, 王鹿霞. 异质结中桥分子电子转移的飞秒激光控制研究. 物理学报, 2009, 58(2): 1332-1337. doi: 10.7498/aps.58.1332
    [16] 王晓雷, 张 楠, 赵友博, 李智磊, 翟宏琛, 朱晓农. 飞秒激光激发空气电离的阈值研究. 物理学报, 2008, 57(1): 354-357. doi: 10.7498/aps.57.354
    [17] 仲佳勇, 李玉同, 鲁 欣, 张 翼, Bernhardt Jens, 刘 峰, 郝作强, 张 喆, 于全芝, 陈 民, 远晓辉, 梁文锡, 赵 刚, 张 杰. 空气中单个激光等离子体通道的形成条件. 物理学报, 2007, 56(12): 7114-7119. doi: 10.7498/aps.56.7114
    [18] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [19] 朱频频, 刘建胜, 徐至展. Ar原子团簇与飞秒强激光相互作用产生的高能离子计算. 物理学报, 2004, 53(3): 803-807. doi: 10.7498/aps.53.803
    [20] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
计量
  • 文章访问数:  676
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-12
  • 修回日期:  2024-10-18
  • 上网日期:  2024-11-12
  • 刊出日期:  2024-12-20

/

返回文章
返回