搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能量分辨光电子干涉仪研究进展

王慧勇 李铭轩 罗嗣佐 丁大军

引用本文:
Citation:

高能量分辨光电子干涉仪研究进展

王慧勇, 李铭轩, 罗嗣佐, 丁大军

Research Progress on High-Energy-Resolution Photoelectron Interferometer

WANG Huiyong, LI Mingxuan, LUO Sizuo, DING Dajun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,阿秒极紫外脉冲的产生与相关谱学测量技术的发展,为研究电子动力学提供了强有力的工具。阿秒时间尺度上的研究,能够实时追踪原子分子的电子运动,测量电子波包演变及其量子特性,对于揭示电子在原子或分子内部的复杂动力学过程至关重要。基于阿秒极紫外脉冲串光源发展起来的高能量分辨光电子干涉仪,以其独特的高能量和高时间分辨特性在阿秒脉冲串光源的表征、原子分子光电离时间延迟、光电子量子态测量以及激光诱导电子动态干涉等动力学研究中实现了重要的应用。本文围绕建立的先进阿秒串光源和高能量分辨电子谱学测量方法,对高能量分辨的阿秒超快光电子干涉技术及其应用进行详细介绍,并基于相关研究进展对阿秒光电子超快动力学以及量子系统相干调控的前景进行了展望。
    In recent years, the development of attosecond extreme ultraviolet (XUV) pulse generation and advanced spectroscopic techniques has provided powerful tools for investigating electron dynamics. Studies on the attosecond timescale enable real-time tracking of electronic motion in atoms and molecules, allowing the measurement of electron wave packet evolution and quantum characteristics, which are crucial for revealing complex dynamical processes within atomic and molecular systems. High-resolution photoelectron interferometers based on attosecond XUV pulse trains have played an essential role in a wide range of applications, owing to their unique combination of high energy and temporal resolution. These include the characterization of attosecond pulse trains (APT), the measurement of photoionization time delays in atoms and molecules, quantum state reconstruction of photoelectrons, and laser-induced electronic interference phenomena. By integrating attosecond temporal resolution with millielectronvolt level energy resolution, high-resolution photoelectron interferometric spectroscopy has emerged as a key technique for probing ultrafast dynamics and quantum state characterization. This review systematically summarizes recent advances in high-resolution attosecond photoelectron interferometry, with a focus on the experimental approaches and spectroscopic techniques required to access electron dynamics on the attosecond scale. These include the generation of narrowband attosecond XUV pulse trains, attosecond-stable Mach-Zehnder interferometers, high-energy resolution time-of-flight electron spectrometers, and quantum interference-based measurement schemes such as RABBIT and KRAKEN. The article discusses in detail the reconstruction of attosecond pulse sequences, shell-resolved photoionization time delay measurements in atoms, spectral phase evolution in Fano resonances, tomographic reconstruction of photoelectron density matrices on attosecond timescales, and control experiments of laser-induced electronic dynamic interference effects. Through the analysis of recent studies, we demonstrate the powerful potential of attosecond high-energy resolution photoelectron interferometry in tracking ultrafast electron dynamics. Finally, the prospects of attosecond photoelectron spectroscopy in ultrafast dynamics and coherent manipulation of quantum systems are discussed.
  • [1]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595

    [2]

    Ferray M, L’Huillier A, Li X, Lompre L, Mainfray G, Manus C 1988 J. Phys. B:At., Mol. Opt. Phys. 21 L31

    [3]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [4]

    Macklin J, Kmetec J, Gordon III C 1993 Phys. Rev. Lett. 70 766

    [5]

    L’ Huillier A, Balcou P 1993 Phys. Rev. Lett. 70 774

    [6]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689

    [7]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [8]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389

    [9]

    Sansone G, Poletto L, Nisoli M 2011 Nat. Photonics 5 655

    [10]

    Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760

    [11]

    Kraus P M, Zürch M, Cushing S K, Neumark D M, Leone S R 2018 Nat. Rev. Chem. 2 82

    [12]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [13]

    Gong X, Lin C, He F, Song Q, Lin K, Ji Q, Zhang W, Ma J, Lu P, Liu Y, Zeng H, Yang W, Wu J 2017 Phys. Rev. Lett. 118 143203

    [14]

    Hu W, Liu Y, Luo S, Li X, Yu J, Li X, Sun Z, Yuan K J, Bandrauk A D, Ding D 2019 Phys. Rev. A 99 011402

    [15]

    Liu Y, Hu W, Luo S, Yuan K J, Sun Z, Bandrauk A D, Ding D 2019 Phys. Rev. A 100 023404

    [16]

    Hu W, Li X, Zhao H, Li W, Lei Y, Kong X, Liu A, Luo S, Ding D 2020 J. Phys. B:At., Mol. Opt. Phys. 53 084002

    [17]

    Borrego-Varillas R, Lucchini M, Nisoli M 2022 Rep. Prog. Phys. 85 066401

    [18]

    Shu Z, Liang H, Wang Y, Hu S, Chen S, Xu H, Ma R, Ding D, Chen J 2022 Phys. Rev. Lett. 128 183202

    [19]

    Li X, Liu Y, Zhang D, He L, Luo S, Shu C C, Ding D 2023 Phys. Rev. A 108 023114

    [20]

    Ren D, Chen C, Li X, Zhao X, Wang S, Li M, Zhao X, Ma P, Wang C, Yang Y, Chen Y, Luo S, Ding D 2023 Phys. Rev. Res. 5 L032044

    [21]

    Li X, Gao X, Li W, Yang T, Zhang D, He L, Luo S, Zhao S F, Ding D 2024 Phys. Rev. A 109 013103

    [22]

    Jin W, Jiang T, Liu J, Luo S, Ren D, Li X, Wang C, Lang Y, Wang X, Zhao J, Zhao Z, Ding D 2024 Ultrafast Sci. 4 0066

    [23]

    Neoričić L, Busto D, Laurell H, Weissenbilder R, Ammitzböll M, Luo S, Peschel J, Wikmark H, Lahl J, Maclot S, Squibb R J, Zhong S, Eng-Johnsson P, Arnold C L, Feifel R, Gisselbrecht M, Lindroth E, L’ Huillier A 2022 Front. Phys. 10 964586

    [24]

    Huppert M, Jordan I, Baykusheva D, von Conta A, Wörner H J 2016 Phys. Rev. Lett. 117 093001

    [25]

    Zhong S, Vinbladh J, Busto D, Squibb R J, Isinger M, Neoričić L, Laurell H, Weissenbilder R, Arnold C L, Feifel R, Dahlström J M, Wendin G, Gisselbrecht M, Lindroth E, L’ Huillier A 2020 Nat. Commun. 11 5042

    [26]

    Nandi S, Plésiat E, Zhong S, Palacios A, Busto D, Isinger M, Neoričić L, Arnold C L, Squibb R J, Feifel R, Decleva P, L’ Huillier A, Martín F, Gisselbrecht M 2020 Sci. Adv. 6 eaba7762

    [27]

    Gong X, Jiang W, Tong J, Qiang J, Lu P, Ni H, Lucchese R, Ueda K, Wu J 2022 Phys. Rev. X 12 011002

    [28]

    Luo S, Weissenbilder R, Laurell H, Ammitzböll M, Poulain V, Busto D, Neoričić L, Guo C, Zhong S, Kroon D, Squibb R J, Feifel R, Gisselbrecht M, L’Huillier A, Arnold C L 2023 Adv. Phys.:X 8 2250105

    [29]

    Laurell H, Finkelstein-Shapiro D, Dittel C, Guo C, Demjaha R, Ammitzböll M, Weissenbilder R, Neoričić L, Luo S, Gisselbrecht M, Arnold C L, Buchleitner A, Pullerits T, L’Huillier A, Busto D 2022 Phys. Rev. Res. 4 033220

    [30]

    Laurell H, Luo S, Weissenbilder R, Ammitzböll M, Ahmed S, Söderberg H, Petersson C L M, Poulain V, Guo C, Dittel C, Finkelstein-Shapiro D, Squibb R J, Feifel R, Gisselbrecht M, Arnold C L, Buchleitner A, Lindroth E, Frisk Kockum A, L’ Huillier A, Busto D 2025 Nat. Photonics 19 352

    [31]

    Li M, Xie M, Wang H, Jia L, Li J, Wang W, Cai J, Hong X, Shi X, Lv Y, Zhao X, Luo S, Jiang W C, Peng L Y, Ding D 2024 Phys. Rev. Lett. 133 253201

    [32]

    Kling M F, Vrakking M J 2008 Annu. Rev. Phys. Chem. 59 463

    [33]

    Calegari F, Sansone G, Stagira S, Vozzi C, Nisoli M 2016 J. Phys. B:At., Mol. Opt. Phys. 49 062001

    [34]

    Jiang W, Armstrong G S J, Han L, Xu Y, Zuo Z, Tong J, Lu P, Dahlström J M, Ueda K, Brown A C, van der Hart H W, Gong X, Wu J 2023 Phys. Rev. Lett. 131 203201

    [35]

    Cruz-Rodriguez L, Dey D, Freibert A, Stammer P 2024 Nat. Rev. Phys. 6 691

    [36]

    Li M, Tang X, Wang H, Li J, Wang W, Cai J, Zhang J, San X, Zhao X, Ma P, Luo S, Jin C, Ding D 2025 Light:Sci. Appl. 14 181

    [37]

    Niu Y, Liang H, Liu Y, Liu F, Ma R, Ding D 2017 Chin. Phys. B 26 074222

    [38]

    Witting T, Osolodkov M, Schell F, Morales F, Patchkovskii S, Susnjar P, Cavalcante F, Menoni C, Schulz C, Furch F, Vrakking M 2022 Optica 9 145

    [39]

    Jiang W, Armstrong G S J, Tong J, Xu Y, Zuo Z, Qiang J, Lu P, Clarke D D A, Benda J, Fleischer A, Ni H, Ueda K, van der Hart H W, Brown A C, Gong X, Wu J 2022 Nat. Commun. 13 5072

    [40]

    Li M, Wang H, Li X, Wang J, Zhang J, San X, Ma P, Lu Y, Liu Z, Wang C, Yang Y, Luo S, Ding D 2023 J. Electron Spectrosc. Relat. Phenom. 263 147287

    [41]

    Behrens M, Englert L, Bayer T, Wollenhaupt M 2024 Rev. Sci. Instrum. 95 093101

    [42]

    Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021 Phys. Rev. A 104 063119

    [43]

    Hammerland D, Berglitsch T, Zhang P, Luu T T, Ueda K, Lucchese R R, Wörner H J 2024 Sci. Adv. 10 eadl3810

    [44]

    Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlström J M, Lindroth E, Feifel R, Gisselbrecht M, L’ Huillier A 2017 Science 358 893

    [45]

    Zaïr A, Mével E, Cormier E, Constant E 2018 J. Opt. Soc. Am. B 35 A110

    [46]

    Ahmadi H, Kellerer S, Ertel D, Moioli M, Reduzzi M, Maroju P K, Jäger A, Shah R N, Lutz J, Frassetto F, Poletto L, Bragheri F, Osellame R, Pfeifer T, Schröter C D, Moshammer R, Sansone G 2020 J. Phys.: Photonics 2 024006

    [47]

    Chini M, Mashiko H, Wang H, Chen S, Yun C, Scott S, Gilbertson S, Chang Z 2009 Opt. Express 17 21459

    [48]

    Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014 Rev. Sci. Instrum. 85 103113

    [49]

    Huppert M, Jordan I, Wörner H J 2015 Rev. Sci. Instrum. 86 123106

    [50]

    Weber S J, Manschwetus B, Billon M, Böttcher M, Bougeard M, Breger P, Géléoc M, Gruson V, Huetz A, Lin N, Picard Y J, Ruchon T, Salières P, Carré B 2015 Rev. Sci. Instrum. 86 033108

    [51]

    Luttmann M, Bresteau D, Hergott J F, Tcherbakoff O, Ruchon T 2021 Phys. Rev. Appl. 15 034036

    [52]

    Vaughan J, Bahder J, Unzicker B, Arthur D, Tatum M, Hart T, Harrison G, Burrows S, Stringer P, Laurent G M 2019 Opt. Express 27 30989

    [53]

    Luo S, Weissenbilder R, Laurell H, Bello R Y, Marante C, Ammitzböll M, Neoričić L, Ljungdahl A, Squibb R J, Feifel R, Gisselbrecht M, Arnold C L, Martín F, Lindroth E, Argenti L, Busto D, L’Huillier A 2024 Phys. Rev. Res. 6 043271

    [54]

    Muller H 2002 Appl. Phys. B 74 s17

    [55]

    Cavalieri A L, Müller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blümel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029

    [56]

    Vos J, Cattaneo L, Patchkovskii S, Zimmermann T, Cirelli C, Lucchini M, Kheifets A, Landsman A S, Keller U 2018 Science 360 1326

    [57]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733

    [58]

    Kim K T, Ko D H, Park J, Tosa V, Nam C H 2010 New J. Phys. 12 083019

    [59]

    Gagnon J, Goulielmakis E, Yakovlev V S 2008 Appl. Phys. B 92 25

    [60]

    Lucchini M, Brügmann M, Ludwig A, Gallmann L, Keller U, Feurer T 2015 Opt. Express 23 29502

    [61]

    Schultze M, Fieß M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris T, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdörfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658

    [62]

    Moore L R, Lysaght M A, Parker J S, van der Hart H W, Taylor K T 2011 Phys. Rev. A 84 061404

    [63]

    Feist J, Zatsarinny O, Nagele S, Pazourek R, Burgdörfer J, Guan X, Bartschat K, Schneider B I 2014 Phys. Rev. A 89 033417

    [64]

    Dahlström J M, Carette T, Lindroth E 2012 Phys. Rev. A 86 061402

    [65]

    Turconi M, Barreau L, Busto D, Isinger M, Alexandridi C, Harth A, Squibb R J, Kroon D, Arnold C L, Feifel R, Gisselbrecht M, Argenti L, Martín F, L’ Huillier A, Salières P 2020 J. Phys. B:At., Mol. Opt. Phys. 53 184003

    [66]

    Gruson V, Barreau L, Jiménez-Galan ff, Risoud F, Caillat J, Maquet A, Carré B, Lepetit F, Hergott J F, Ruchon T, Argenti L, Taïeb R, Martín F, Salières P 2016 Science 354 734

    [67]

    Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U, Chang Z 2010 Phys. Rev. Lett. 105 143002

    [68]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716

    [69]

    Wickenhauser M, Burgdörfer J, Krausz F, Drescher M 2005 Phys. Rev. Lett. 94 023002

    [70]

    Zielinski A, Majety V P, Nagele S, Pazourek R, Burgdörfer J, Scrinzi A 2015 Phys. Rev. Lett. 115 243001

    [71]

    Agarwal G S, Haan S L, Cooper J 1984 Phys. Rev. A 29 2552

    [72]

    Vinbladh J, Dahlström J M, Lindroth E 2019 Phys. Rev. A 100 043424

    [73]

    Marante C, Klinker M, Corral I, González-Vázquez J, Argenti L, Martín F 2017 J. Chem. Theory Comput. 13 499

    [74]

    Carette T, Dahlström J M, Argenti L, Lindroth E 2013 Phys. Rev. A 87 023420

    [75]

    Harkema N, Cariker C, Lindroth E, Argenti L, Sandhu A 2021 Phys. Rev. Lett. 127 023202

    [76]

    Pabst S, Greenman L, Ho P J, Mazziotti D A, Santra R 2011 Phys. Rev. Lett. 106 053003

    [77]

    Nishi T, Lötstedt E, Yamanouchi K 2019 Phys. Rev. A 100 013421

    [78]

    Arnold C, Larivière-Loiselle C, Khalili K, Inhester L, Welsch R, Santra R 2020 J. Phys. B:At., Mol. Opt. Phys. 53 164006

    [79]

    Vrakking M J J 2021 Phys. Rev. Lett. 126 113203

    [80]

    Vinbladh J, Dahlström J M, Lindroth E 2022 Atoms 10 80

    [81]

    Maxwell A S, Madsen L B, Lewenstein M 2022 Nat. Commun. 13 4706

    [82]

    Cattaneo L, Pedrelli L, Bello R Y, Palacios A, Keathley P D, Martín F, Keller U 2022 Phys. Rev. Lett. 128 063001

    [83]

    Koll L M, Maikowski L, Drescher L, Witting T, Vrakking M J J 2022 Phys. Rev. Lett. 128 043201

    [84]

    Blavier M, Gelfand N, Levine R, Remacle F 2022 Chem. Phys. Lett. 804 139885

    [85]

    Blavier M, Levine R D, Remacle F 2022 Phys. Chem. Chem. Phys. 24 17516

    [86]

    Demekhin P V, Cederbaum L S 2012 Phys. Rev. Lett. 108 253001

    [87]

    Demekhin P V, Cederbaum L S 2013 Phys. Rev. A 88 043414

    [88]

    Baghery M, Saalmann U, Rost J M 2017 Phys. Rev. Lett. 118 143202

    [89]

    Jiang W C, Burgdörfer J 2020 Opt. Express 26 053424

    [90]

    Jiang W C, Chen S G, Peng L Y, Burgdörfer J 2020 Phys. Rev. Lett. 124 043203

    [91]

    Liang H, Jiang W C, Wang M X, Gong Q, Krajewska K, Peng L Y 2020 Phys. Rev. A 101 053424

    [92]

    Bertolino M, Carlström S, Peschel J, Zapata F, Lindroth E, Dahlström J M 2022 Phys. Rev. A 106 043108

  • [1] 邓意民, 张煜, 陆培祥, 曹伟. 基于水窗高次谐波阿秒光源的瞬态吸收光谱装置研究. 物理学报, doi: 10.7498/aps.74.20250550
    [2] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响. 物理学报, doi: 10.7498/aps.73.20240016
    [3] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究. 物理学报, doi: 10.7498/aps.73.20241378
    [4] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究. 物理学报, doi: 10.7498/aps.71.20221298
    [5] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, doi: 10.7498/aps.70.20210339
    [6] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷. 光电离过程中Fe靶和V靶特征辐射的角相关研究. 物理学报, doi: 10.7498/aps.69.20191524
    [7] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究. 物理学报, doi: 10.7498/aps.68.20190060
    [8] 李贵花, 谢红强, 姚金平, 储蔚, 程亚, 柳晓军, 陈京, 谢新华. 中红外飞秒激光场中氮分子高次谐波的多轨道干涉特性研究. 物理学报, doi: 10.7498/aps.65.224208
    [9] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离. 物理学报, doi: 10.7498/aps.64.133201
    [10] 李小刚, 李芳, 何志聪. 双色场驱动下高次谐波的径向量子轨道干涉. 物理学报, doi: 10.7498/aps.62.087201
    [11] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, doi: 10.7498/aps.62.024212
    [12] 单晓斌, 赵玉杰, 孔蕊弘, 王思胜, 盛六四, 黄明强, 王振亚. ArCO团簇光电离的实验和理论研究. 物理学报, doi: 10.7498/aps.62.053602
    [13] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算. 物理学报, doi: 10.7498/aps.60.053202
    [14] 王向丽, 董晨钟, 桑萃萃. Ne原子的1s光电离及其Auger衰变过程的理论研究. 物理学报, doi: 10.7498/aps.58.5297
    [15] 顾 斌, 崔 磊, 曾祥华, 张丰收. 超强飞秒激光脉冲作用下氢分子的高次谐波行为——基于含时密度泛函理论的模拟. 物理学报, doi: 10.7498/aps.55.2972
    [16] 刘凌涛, 王民盛, 韩小英, 李家明. 溴的光电离和辐射复合——平均原子模型速率系数与细致组态速率系数. 物理学报, doi: 10.7498/aps.55.2322
    [17] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究. 物理学报, doi: 10.7498/aps.55.1083
    [18] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究. 物理学报, doi: 10.7498/aps.55.3433
    [19] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, doi: 10.7498/aps.53.2316
    [20] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数. 物理学报, doi: 10.7498/aps.50.655
计量
  • 文章访问数:  48
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-29

/

返回文章
返回