搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光时间色散调控铌酸锂片上太赫兹波产生

段浩宇 徐西坦 郑子阳 黄意博 卢瑶 吴强 许京军

引用本文:
Citation:

飞秒激光时间色散调控铌酸锂片上太赫兹波产生

段浩宇, 徐西坦, 郑子阳, 黄意博, 卢瑶, 吴强, 许京军

Generation of terahertz waves on lithium niobate chip by temporal dispersion of femtosecond laser

DUAN Haoyu, XU Xitan, ZHENG Ziyang, HUANG Yibo, LU Yao, WU Qiang, XU Jingjun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 飞秒激光激发非线性材料是目前太赫兹的关键产生技术之一. 它由于具有超快时间分辨、超宽频谱分布等优点, 已广泛应用于太赫兹表征与测量、感知与成像等方面. 然而通过微结构等对太赫兹波的调控方法只能对太赫兹传输过程进行调控, 且面临设计困难, 工艺复杂等障碍, 难以在产业上广泛应用. 本文通过引入脉冲整形系统改变飞秒激光脉冲的时间色散, 可以直接调控飞秒激光与铌酸锂晶体的相互作用过程, 从而对太赫兹产生过程进行直接调控. 同时, 本文利用冲击受激拉曼散射模型与黄昆方程, 对太赫兹波的产生过程进行仿真模拟, 证明了利用飞秒激光脉冲时间色散调控太赫兹波的可行性. 这一结果对于未来基于铌酸锂晶体的片上太赫兹源主动调控具有重要的借鉴意义.
    Femtosecond laser excitation of nonlinear materials is one of the key technologies for generating terahertz waves at present. Due to its advantages such as ultrashort time resolution and ultrabroad frequency spectrum, the technology has been widely used to characterize, measure, sense and image terahertz waves. However, the methods of controlling terahertz waves through microstructures can only regulate their transmission process, but they will face obstacles such as design difficulty and complex processes, making it hard to be widely used in industry. In this work, by introducing a pulse-shaping system to change the time dispersion of femtosecond laser pulses, the interaction process between femtosecond laser and lithium niobate crystals can be directly regulated, therefore the terahertz generation process can be directly controlled. Taking the second-order time dispersion for example, the terahertz signals generated by pump light with different second-order time dispersion in lithium niobate is detected by using the pump-probe phase-contrast imaging system. Meanwhile, the generation process of terahertz waves is simulated using the impact stimulated Raman scattering model and Huang-Kun equation, demonstrating the feasibility of using femtosecond laser pulses to adjust the time dispersion of terahertz waves. The experimental and simulation results show that when the time dispersion of femtosecond laser causes the pulse width to increase, the time in which the lithium niobate lattice is subjected to the impact stimulated Raman scattering force is prolonged, and the macroscopic polarization of the lithium niobate lattice is correspondingly extended. On the one hand, the longer duration of polarization results in a wider terahertz signal in the time domain and a narrower one in the frequency domain. On the other hand, since the impact stimulated Raman scattering force is proportional to the pump light intensity and is in the same direction during the interaction time, when the Raman scattering force ends, the lattice reaches a maximum displacement. The longer Raman scattering force causes the lattice to move to one side for a longer time, and correspondingly, the subsequent vibration of one period takes a longer time, ultimately resulting in a lower center frequency. In addition, this work also points out that the modulation of terahertz signals by pump light pulse width may be affected by the thickness of the wafer, and the modulation effect on thinner media may be more obvious. This result is of great reference significance for the active regulation of on-chip terahertz sources based on lithium niobate crystals in the future.
  • 图 1  实验系统构成: (a) 泵浦探测光路; (b) 模拟中不同群时延色散的泵浦光的强度变化; (c) 实验中不同群时延色散的泵浦光的强度变化

    Fig. 1.  Composition of the experimental system: (a) Pump-probe optical path; (b) Intensity variation of pump light with different group delay dispersion in the simulation; (c) Intensity variation of pump light with different group delay dispersion in the experiment.

    图 2  泵浦光功率一致时的时域信号: (a)—(c) 实验中不同色散泵浦光产生的THz信号及其相对峰值强度变化; (d)—(f) 模拟中不同色散泵浦光产生的THz信号及其相对峰值强度变化

    Fig. 2.  Time domain signal when the pump light power is consistent: (a)–(c) THz signals generated by different dispersion pump lights and their relative peak intensity changes in the experiment; (d)–(f) THz signals generated by pump lights with different dispersions and their relative peak intensity changes in the simulation.

    图 3  泵浦光功率一致时的频域信号: (a), (b) 实验中不同色散泵浦光产生的THz信号; (c), (d) 模拟中不同色散泵浦光产生的THz信号

    Fig. 3.  Frequency domain signal when the pump light power is consistent: (a), (b) THz signals generated by pump lights with different dispersion in the experiment; (c), (d) THz signals generated by pump lights with different dispersion in the simulation.

    图 4  高斯脉冲模拟泵浦产生THz波: (a)—(c)脉宽相同、峰值强度不同的泵浦光及其产生的THz信号; (d)—(f) 脉宽不同、峰值强度相同的泵浦光及其产生的THz信号

    Fig. 4.  Gaussian pulse simulates pumping to generate THz waves: (a)–(c) THz signals generated by pump lights with the same pulse width but different intensities; (d)–(f) THz signals generated by pump lights with different pulse widths but the same intensity

  • [1]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar

    [2]

    Shahriar B Y, Elezzabi A Y 2024 ACS Photonics 11 4733Google Scholar

    [3]

    Suzuki D, Oda S, Kawano Y 2016 Nat. Photonics 10 809Google Scholar

    [4]

    Lee G, Lee J, Park Q H, Seo M 2022 ACS Photonics 9 1500Google Scholar

    [5]

    Zhang X Q, Zhang X, Zhang Z C, Zhang T Y, Xu X X, Tang F, Yang J, Wang J K, Jiang H, Duan Z Y, Wei Y Y, Gong Y B, Zhang H, Li P N, Hu M 2024 Nano Lett. 24 15008Google Scholar

    [6]

    Srivastava Y K, Ako R T, Gupta M, Bhaskaran M, Sriram S, Singh R 2019 Appl. Phys. Lett. 115 151105Google Scholar

    [7]

    Basini M, Pancaldi M, Wehinger B, Udina M, Unikandanunni V, Tadano T, Hoffmann M C, Balatsky A V, Bonetti S 2024 Nature 628 534Google Scholar

    [8]

    Srivastava Y K, Ako R T, Gupta M, Bhaskaran M, Sriram S, Singh R 2019 Appl. Phys. Lett. 115 151105Google Scholar

    [9]

    Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023 Adv. Mater. 35 2208947Google Scholar

    [10]

    Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar

    [11]

    Zhou X, Lu Y, Liu H B, Wu Q, Xu X T, Chen L, Li Z X, Wang R, Guo J, Xu J J 2023 Mater. Today Phys. 35 101102Google Scholar

    [12]

    Xu X T, Lu Y, Huang Y b, Zhou X, Ma R B, Xiong H, Li M L, Wu Q, Xu J J 2023 Opt. Express 31 44375Google Scholar

    [13]

    Xu X T, Huang Y B, Lu Y, Ma R B, Wu Q, Xu J J 2023 Chin. J. Lasers 50 1714004Google Scholar

    [14]

    Huang L, Tian D, Liao L Y, Qiu H S, Bai H, Wang Q, Pan F, Zhang C H, Jin B B, Song C 2025 Adv. Mater. 37 2402063Google Scholar

    [15]

    Liao G Q, Sun F Z, Lei H Y, Wang T Z, Wang D, Wei Y Y, Liu F, Wang X, Li Y T, Zhang J 2024 Phys. Rev. Lett. 132 155001Google Scholar

    [16]

    Zhang S J, Zhou W M, Yin Y, Zou D B, Zhao N, Xie D, Zhuo H B 2023 Chin. Phys. B 32 035201Google Scholar

    [17]

    Cheng H Y, Ma Q R, Xu H R, Zhang H P, Jin Z M, He W, Peng Y 2024 Acta Phys. Sin. 73 167801Google Scholar

    [18]

    Xiong H, Lu Y, Wu Q, Li Z X, Qi J W, Xu X T, Ma R B, Xu J J 2021 ACS Photonics 8 2737Google Scholar

    [19]

    Huang Y B, Lu Y, Li W, Xu X T, Jiang X D, Ma R B, Chen L, Ruan N J, Wu Q, Xu J 2024 Light: Sci. Appl. 13 212Google Scholar

    [20]

    Lu Y, Huang Y B, Cheng J K, Ma R B, Xu X T, Zang Y J, Wu Q, Xu J J 2024 Nanophotonics 13 3279Google Scholar

    [21]

    Liu W C, Zhou X W, Zou S C, Hu Z G, Shen Y, Cai M Q, Lin D D, Zhou J, Deng X H, Guo T J, Lei J T 2023 Nanophotonics 12 1177Google Scholar

    [22]

    Xu J J, Liao D G, Gupta M, Zhu Y M, Zhuang S L, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024Google Scholar

    [23]

    Liu B W, Peng Y, Jin Z M, Wu X, Gu H Y, Wei D S, Zhu Y M, Zhuang S L 2023 Chem. Eng. J. 462 142347Google Scholar

    [24]

    Huang L H, Cao H Y, Chen L, Ma Y, Yang Y H, Liu X Y, Wang W Q, Zhu Y M, Zhuang S L 2024 Talanta 269 125481Google Scholar

    [25]

    Kosloff R, Hammerich A D, Tannor D 1992 Phys. Rev. Lett. 69 2172Google Scholar

    [26]

    Chesnoy J, Mokhtari A 1988 Phys. Rev. A 38 3566Google Scholar

    [27]

    Kosloff R, Hammerich A D, Tannor D 1992 Phys. Rev. Lett. 69 2172Google Scholar

    [28]

    Huang K 1951 Nature 167 779

    [29]

    Huang K 1951 Proc. R. Soc. Lon. Ser. A 208 352Google Scholar

    [30]

    Wu Q, Lu Y, Ma R B, Xu X T, Huang Y B, Xu J J 2024 Laser Optoelectron. Prog. 61 0119001Google Scholar

    [31]

    Wu Q, Werley C A, Lin K H, Dorn A, Bawendi M G, Nelson K A 2009 Opt. Express 17 9219Google Scholar

    [32]

    Weiner A M 2000 Rev. Sci. Instrum. 71 1929Google Scholar

    [33]

    Parize G, Natile M, Guichard F, Comby A, Hanna M, Georges P 2025 Appl. Phys. Lett. 126 101105Google Scholar

  • [1] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像. 物理学报, doi: 10.7498/aps.72.20222251
    [2] 李家祥, 王慧琴, 徐和庆, 张华, 冯艳, 董美彤. 基于序列二次规划算法的超小尺寸微纳波长分束器的逆向设计. 物理学报, doi: 10.7498/aps.72.20230892
    [3] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, doi: 10.7498/aps.71.20210871
    [4] 滕鲁, 喻忠军, 朱大立. 基于低温共烧陶瓷的毫米波-太赫兹基片集成波导过渡结构. 物理学报, doi: 10.7498/aps.71.20220072
    [5] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究. 物理学报, doi: 10.7498/aps.70.20210871
    [6] 黄辉, 胡晨岩, 田梓聪, 缪秋霞, 王慧琴. 基于移动渐近线算法的大角度偏转分束器的智能设计. 物理学报, doi: 10.7498/aps.70.20210117
    [7] 任泽平, 陈再高, 陈剑楠, 乔海亮. 频率色散表面阻抗对真空电子太赫兹源的影响. 物理学报, doi: 10.7498/aps.69.20191488
    [8] 高扬, ChandanPandey, 孔德胤, 王春, 聂天晓, 赵巍胜, 苗俊刚, 汪力, 吴晓君. 退火效应增强铁磁异质结太赫兹发射实验及机理. 物理学报, doi: 10.7498/aps.69.20200526
    [9] 田梓聪, 郭遗敏, 胡晨岩, 王慧琴, 路翠翠. 宽带高效聚焦的片上集成纳米透镜. 物理学报, doi: 10.7498/aps.69.20200948
    [10] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, doi: 10.7498/aps.68.20191055
    [11] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, doi: 10.7498/aps.68.20190217
    [12] 牟媛, 吴振森, 张耿, 高艳卿, 阳志强. 基于Kramers-Kronig关系建立金属太赫兹色散模型. 物理学报, doi: 10.7498/aps.66.120202
    [13] 左剑, 张亮亮, 巩辰, 张存林. 太赫兹片上系统和基于微纳结构的太赫兹超宽谱源的研究进展. 物理学报, doi: 10.7498/aps.65.010704
    [14] 李忠洋, 邴丕彬, 徐德刚, 曹小龙, 姚建铨. 级联参量振荡产生太赫兹辐射的理论研究. 物理学报, doi: 10.7498/aps.62.084212
    [15] 王海艳, 赵国忠, 王新强. 不同抽运光强激发窄带隙半导体产生太赫兹辐射的研究. 物理学报, doi: 10.7498/aps.60.043202
    [16] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, doi: 10.7498/aps.60.034210
    [17] 黄楠, 李雪峰, 刘红军, 夏彩鹏. 增益饱和对光学差频产生太赫兹辐射的功率和稳定性的影响. 物理学报, doi: 10.7498/aps.58.8326
    [18] 邓玉强, 郎利影, 邢岐荣, 曹士英, 于 靖, 徐 涛, 李 健, 熊利民, 王清月, 张志刚. Gabor小波分析太赫兹波时间-频率特性的研究. 物理学报, doi: 10.7498/aps.57.7747
    [19] 贾婉丽, 施 卫, 纪卫莉, 马德明. 光电导开关产生太赫兹电磁波双极特性分析. 物理学报, doi: 10.7498/aps.56.3845
    [20] 李德荣, 吕晓华, 吴 萍, 骆清铭, 陈 伟, 曾绍群. 声光偏转器扫描飞秒激光的时间色散补偿. 物理学报, doi: 10.7498/aps.55.4729
计量
  • 文章访问数:  232
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-29
  • 修回日期:  2025-05-28
  • 上网日期:  2025-06-06

/

返回文章
返回