搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火效应增强铁磁异质结太赫兹发射实验及机理

高扬 ChandanPandey 孔德胤 王春 聂天晓 赵巍胜 苗俊刚 汪力 吴晓君

引用本文:
Citation:

退火效应增强铁磁异质结太赫兹发射实验及机理

高扬, ChandanPandey, 孔德胤, 王春, 聂天晓, 赵巍胜, 苗俊刚, 汪力, 吴晓君

Annealing effect on terahertz emission enhancement from ferromagnetic heterostructures

Gao Yang, Chandan Pandey, Kong De-Yin, Wang Chun, Nie Tian-Xiao, Zhao Wei-Sheng, Miao Jun-Gang, Wang Li, Wu Xiao-Jun
PDF
HTML
导出引用
  • 系统研究了退火效应对飞秒激光脉冲驱动的基于钴铁硼/重金属异质结辐射太赫兹波的影响. 通过对发射样品进行退火处理, 在钨/钴铁硼结构中观察到三倍增强的太赫兹波辐射, 而铂/钴铁硼结构中太赫兹波的强度也获得了双倍提升. 通过太赫兹时域光谱系统对异质结样品的透射测量和四探针法电阻率测量实验, 验证了退火效应的主要机理可能源于材料结晶引起的热电子平均自由程增加, 以及材料对太赫兹波的吸收降低. 本研究不仅加深了对自旋太赫兹辐射机理的理解, 而且为研制高性能太赫兹辐射源及其应用有一定的贡献.
    We systematically investigate the influence of annealing effect on terahertz (THz) generation from CoFeB/heavy metal heterostructures driven by femtosecond laser pulses. The THz yield is achieved to increase triply in W/CoFeB through annealing effect, and doubly in Pt/CoFeB. The annealing effect originates from both the decrease of synthetic effect of THz absorption and the increase of hot electron mean free path induced by crystallization, with the latter being dominant, which is experimentally corroborated by THz transmission measurement of time-domain spectrum and four-probe resistivity t. Our observations not only deepen understand the spintronic THz radiation mechanism but also provide a novel platform for high speed spintronic opto-electronic devices.
      通信作者: 聂天晓, nietianxiao@buaa.edu.cn ; 吴晓君, xiaojunwu@buaa.edu.cn
    • 基金项目: 北京市自然科学基金(批准号: 4194083)、国家自然科学基金(批准号: 61905007, 61774013, 11827807, 61731001)和国家重点研发计划(批准号: 2019YFB2203102)资助的课题
      Corresponding author: Nie Tian-Xiao, nietianxiao@buaa.edu.cn ; Wu Xiao-Jun, xiaojunwu@buaa.edu.cn
    • Funds: Project supported by Beijing Natural Science Foundation (Grant No. 4194083), the National Natural Science Foundation of China (Grant Nos. 61905007, 61774013, 11827807, 61731001), and the National Key R&D Program of China (Grant No. 2019YFB2203102)
    [1]

    Zhang X C, Shkurinov A, Zhang Y 2017 Nat. Photonics 11 16Google Scholar

    [2]

    Wu X J, Ma J L, Zhang B L, Chai S S, Li Y T 2017 Opt. Express 26 7107

    [3]

    Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T 2016 J. Opt. 18 093004Google Scholar

    [4]

    Wu X, Quan B, Xu X, Hu F, Li W 2013 Appl. Surf. Sci. 285 853Google Scholar

    [5]

    Wu X, Xu X, Lu X, Wang L 2013 Appl. Surf. Sci. 279 92Google Scholar

    [6]

    张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝 2018 物理学报 67 197202Google Scholar

    Zhang S N, Zhu W H, Li J G, Jin Z M, Dai Y, Zhang Z Z 2018 Acta Phys. Sin. 67 197202Google Scholar

    [7]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S 2013 Nat. Nanotechnol. 8 256Google Scholar

    [8]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I 2016 Nat. Photonics 10 483Google Scholar

    [9]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T 2016 Nat. Nanotechnol. 11 455Google Scholar

    [10]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [11]

    Sasaki Y, Suzuki K, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [12]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q C, Zhai Z H, Zhu L G, Cai J W, Miao B F, Ding H F 2018 Adv. Opt. Mater. 6 1800965Google Scholar

    [13]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247Google Scholar

    [14]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [15]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [16]

    Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2017 J. Phys. D: Appl. Phys. 51 034001

    [17]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [18]

    Battiato M, Carva K, Oppeneer P 2010 Phys. Rev. Lett. 105 27203Google Scholar

    [19]

    Kong D Y, Wu X J, Wang B, Nie T X, Xiao M, Pandey C, Gao Y, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [20]

    Chen X H, Wu X J, Shan S Y, Guo F W, Kong D Y, Wang C, Nie T X, Pandey C, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [21]

    Wang B, Shan S S, Wu X J, Wang C, Pandey C, Nie T X, Zhao W S, Li Y T, Miao J G, and Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [22]

    Yuasa S, Suzuki Y, Katayama T, Ando K 2005 Appl. Phys. Lett. 87 242503Google Scholar

    [23]

    Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523Google Scholar

    [24]

    Sinova J, Valenzuela S O, Wunderlich J, Back C, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [25]

    Belmeguenai M, Aitoukaci K, Zighem F, Gabor M, Petrisor J T, Mos R, Tiusan C 2018 J. Appl. Phys. 123 113905Google Scholar

    [26]

    Swamy G V, Pandey H, Srivastava A, Dalai M, Maurya K, Rashmi, Rakshit R 2013 AIP Advances 3 072129Google Scholar

    [27]

    Huang S X, Chen T Y, Chien C L 2008 Appl. Phys. Lett. 92 242509Google Scholar

    [28]

    Hao Q, Chen W, Xiao G 2015 Appl. Phys. Lett. 106 182403Google Scholar

    [29]

    Guo F W, Pandey C, Wang C, Nie T X, Wen L G, Zhao W S, Miao J G, Wang L, Wu X J 2020 OSA Continuum. 3 893Google Scholar

    [30]

    Bonetti S, Hoffmann M, Sher M J, Chen Z, Yang S H, Samant M, Parkin S, Dürr H 2016 Phys. Rev. Lett. 117 087205Google Scholar

    [31]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 022404

    [32]

    Zega T J, Hanbicki A T, Erwin S C, Zutic I U, Kioseoglou G, Li C H, Jonker B T, Stroud R M 2006 Microsc. Microanal. 12 972Google Scholar

  • 图 1  实验装置示意图以及样品结构信息 (a) 太赫兹发射实验装置: BD, 平衡探测器; WP, 沃拉斯顿棱镜; $ \lambda /4 $, 1/4波片; SW, 硅片; M, 铝反射镜; P1—P4, 90°离轴抛物面镜; S, 样品; (b), (c) 对n和n+的定义: 抽运激光入射到玻璃基底定义为n, 入射异质结薄膜定义为n+. HM, 重金属, 包括钨和铂; FM, 铁磁性金属, 即钴铁硼

    Fig. 1.  Schematic diagram of experimental setup and sample structure information. (a) Experimental setup of the terahertz emission system. BD, balanced detector; WP, Wollaston prism; λ/4, quarter wave plate; SW, silicon wafer; M, aluminum mirror; P1–P4, 90° off-axis parabolic mirrors; S, sample; (b) and (c) definitions of n and n+. When the laser pulses first incident onto the glass substrate, it is defined as n, while the other case is defined as n+. HM, heavy metals including W and Pt; FM, ferromagnetic metal CoFeB.

    图 2  (a), (e) 钴铁硼(2.0)/钨(2.2)和钴铁硼(2.2)/铂(4.0)双层结构示意图; (b), (c) 退火和未退火的钴铁硼(2.0)/钨(2.2)样品辐射的时域太赫兹波形, 分别对应n+和n情况; (f), (g) 退火和未退火的铂(4.0)/钴铁硼(2.2)样品辐射的时域太赫兹波形, 分别对应n+和n情况; (d), (h) 退火和未退火钴铁硼(2.0)/钨(2.2)、钴铁硼(2.2)/铂(4.0)样品辐射太赫兹波的频谱

    Fig. 2.  (a), (e) Bilayer structure diagram of CoFeB(2.0)/W(2.2) and CoFeB(2.2)/Pt(4.0); (b), (c) terahertz temporal waveforms from the CoFeB(2.0)/W(2.2) samples with and without annealing, for the cases of n+ and n, respectively; (f), (g) terahertz temporal waveforms from the Pt(4.0)/CoFeB(2.2) samples with and without annealing, for the cases of n+ and n, respectively; (d), (h) terahertz spectra obtained from CoFeB(2.0)/W(2.2) and CoFeB(2.2)/Pt(4.0), respectively, with and without annealing.

    图 3  (a), (b) 当两个样品都经退火处理, 飞秒激光脉冲分别从正(n+)和负(n)侧入射到钨(4.0)/钴铁硼(2.2)和铂(4.0)/钴铁硼(2.2)纳米薄膜上产生的太赫兹时域信号; (d), (e)未退火样品的结果; (c), (f)退火和未退火的钴铁硼(2.2)/钨(4.0)和钴铁硼(2.2)/铂(4.0)辐射太赫兹波的频谱

    Fig. 3.  (a), (b) terahertz temporal waveforms in the annealed W(4.0)/CoFeB(2.2) and Pt(4.0)/CoFeB(2.2) nanofilms from the positive (n+) and negative (n) sides, respectively; (d), (e) results from both the samples without annealing; (c), (f) terahertz spectra radiated from annealed and unannealed CoFeB(2.2)/W(4.0) and CoFeB(2.2)/Pt(4.0), respectively.

    图 4  (a), (b) 退火和未退火状态下, 钨(4.0)/钴铁硼(2.2)和铂(4.0)/钴铁硼(2.2)样品透射的太赫兹时域信号, 插图为峰值放大图; (c) 样品电阻率的退火温度依赖性, 插图为样品的磁光克尔测量结果; (d) 退火前后, 钴铁硼从非晶态结晶转为结晶态的原子结构示意图; (e) $z = {z_{\rm{s}}}$处, 电子密度的模拟结果, 其中电子速度v = 0.5 nm/fs

    Fig. 4.  (a) Transmitted terahertz signals in W(4.0)/CoFeB(2.2) and (b) Pt(4.0)/CoFeB(2.2) with and without annealing. Inset: Enlarged peak values. (c) The annealing temperature dependence of the resistivity of samples. Inset: result of magneto-optic Kerr measurement of the samples. (d) Schematic diagram of the atomization of CoFeB crystallize from amorphous state to crystalline state before and after annealing. (e) The simulation results of electron density at $z = {z_{\rm{s}}}$. The electron velocity v = 0.5 nm/fs.

  • [1]

    Zhang X C, Shkurinov A, Zhang Y 2017 Nat. Photonics 11 16Google Scholar

    [2]

    Wu X J, Ma J L, Zhang B L, Chai S S, Li Y T 2017 Opt. Express 26 7107

    [3]

    Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T 2016 J. Opt. 18 093004Google Scholar

    [4]

    Wu X, Quan B, Xu X, Hu F, Li W 2013 Appl. Surf. Sci. 285 853Google Scholar

    [5]

    Wu X, Xu X, Lu X, Wang L 2013 Appl. Surf. Sci. 279 92Google Scholar

    [6]

    张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝 2018 物理学报 67 197202Google Scholar

    Zhang S N, Zhu W H, Li J G, Jin Z M, Dai Y, Zhang Z Z 2018 Acta Phys. Sin. 67 197202Google Scholar

    [7]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S 2013 Nat. Nanotechnol. 8 256Google Scholar

    [8]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I 2016 Nat. Photonics 10 483Google Scholar

    [9]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T 2016 Nat. Nanotechnol. 11 455Google Scholar

    [10]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [11]

    Sasaki Y, Suzuki K, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [12]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q C, Zhai Z H, Zhu L G, Cai J W, Miao B F, Ding H F 2018 Adv. Opt. Mater. 6 1800965Google Scholar

    [13]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247Google Scholar

    [14]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [15]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [16]

    Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2017 J. Phys. D: Appl. Phys. 51 034001

    [17]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [18]

    Battiato M, Carva K, Oppeneer P 2010 Phys. Rev. Lett. 105 27203Google Scholar

    [19]

    Kong D Y, Wu X J, Wang B, Nie T X, Xiao M, Pandey C, Gao Y, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [20]

    Chen X H, Wu X J, Shan S Y, Guo F W, Kong D Y, Wang C, Nie T X, Pandey C, Wen L G, Zhao W S, Ruan C J, Miao J G, Li Y T, Wang L 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [21]

    Wang B, Shan S S, Wu X J, Wang C, Pandey C, Nie T X, Zhao W S, Li Y T, Miao J G, and Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [22]

    Yuasa S, Suzuki Y, Katayama T, Ando K 2005 Appl. Phys. Lett. 87 242503Google Scholar

    [23]

    Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523Google Scholar

    [24]

    Sinova J, Valenzuela S O, Wunderlich J, Back C, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [25]

    Belmeguenai M, Aitoukaci K, Zighem F, Gabor M, Petrisor J T, Mos R, Tiusan C 2018 J. Appl. Phys. 123 113905Google Scholar

    [26]

    Swamy G V, Pandey H, Srivastava A, Dalai M, Maurya K, Rashmi, Rakshit R 2013 AIP Advances 3 072129Google Scholar

    [27]

    Huang S X, Chen T Y, Chien C L 2008 Appl. Phys. Lett. 92 242509Google Scholar

    [28]

    Hao Q, Chen W, Xiao G 2015 Appl. Phys. Lett. 106 182403Google Scholar

    [29]

    Guo F W, Pandey C, Wang C, Nie T X, Wen L G, Zhao W S, Miao J G, Wang L, Wu X J 2020 OSA Continuum. 3 893Google Scholar

    [30]

    Bonetti S, Hoffmann M, Sher M J, Chen Z, Yang S H, Samant M, Parkin S, Dürr H 2016 Phys. Rev. Lett. 117 087205Google Scholar

    [31]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 022404

    [32]

    Zega T J, Hanbicki A T, Erwin S C, Zutic I U, Kioseoglou G, Li C H, Jonker B T, Stroud R M 2006 Microsc. Microanal. 12 972Google Scholar

  • [1] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面. 物理学报, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [2] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [3] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [4] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射. 物理学报, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [5] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [6] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [7] 顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天. 不同应力下碳化硅场效应晶体管器件总剂量效应及退火特性. 物理学报, 2021, 70(16): 166101. doi: 10.7498/aps.70.20210515
    [8] 任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高. Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱. 物理学报, 2020, 69(20): 207802. doi: 10.7498/aps.69.20201518
    [9] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [10] 张延清, 齐春华, 周佳明, 刘超铭, 马国亮, 蔡勖升, 王天琦, 霍明学. 倒置四结(IMM4J)太阳电池中InGaAs(1.0 eV)和InGaAs(0.7 eV)子电池高能电子辐照退火效应. 物理学报, 2020, 69(22): 228802. doi: 10.7498/aps.69.20200557
    [11] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [12] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [13] 孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇. 铁磁/非磁金属异质结中的拓扑霍尔效应. 物理学报, 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [14] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射. 物理学报, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [15] 毕卫红, 陈俊刚, 张胜, 于腾飞, 张燕君, 侯旭涛. 基于分光光度法痕量重金属传感模型和影响因素的研究. 物理学报, 2017, 66(7): 074206. doi: 10.7498/aps.66.074206
    [16] 牟媛, 吴振森, 张耿, 高艳卿, 阳志强. 基于Kramers-Kronig关系建立金属太赫兹色散模型. 物理学报, 2017, 66(12): 120202. doi: 10.7498/aps.66.120202
    [17] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究. 物理学报, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [18] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析. 物理学报, 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [19] 贾婉丽, 纪卫莉, 施 卫. 半绝缘GaAs光电导开关产生太赫兹波电场屏蔽效应的二维Monte Carlo模拟. 物理学报, 2007, 56(4): 2042-2046. doi: 10.7498/aps.56.2042
    [20] 冯锡淇, 邓棠波. 钨酸铅晶体中的偶极缺陷. 物理学报, 2003, 52(8): 2066-2074. doi: 10.7498/aps.52.2066
计量
  • 文章访问数:  7868
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-05-06
  • 上网日期:  2020-05-12
  • 刊出日期:  2020-10-20

/

返回文章
返回