-
以碳化硅场效应晶体管器件作为研究对象, 对其开展了不同电压、不同温度下的钴源辐照实验以及辐照后的退火实验. 使用半导体参数分析仪测试了器件的直流参数, 研究了器件辐照敏感参数在辐照和退火过程中的变化规律, 分析了电压、温度对器件辐照退化产生影响的原因, 也探索了退火恢复的机理. 结果表明: 辐照感生的氧化物陷阱电荷是造成碳化硅场效应晶体管器件电学参数退化的主要原因, 电压和温度条件会影响氧化物陷阱电荷的最终产额, 从而导致器件在不同电压、不同温度下辐照后的退化程度存在差异; 退火过程中由于氧化物陷阱电荷发生了隧穿退火, 导致器件电学性能得到了部分恢复.In this paper, silicon carbide field effect transistor device is taken as a research object, and the cobalt source irradiation experiment is conducted under different voltages and different temperatures and the annealing experiment is also performed after irradiation. The semiconductor parameter analyzer is used to test the direct current (DC) parameters of the device, and the changes in the radiation sensitive parameters of the device in the irradiation and annealing process are studied. The reasons for the influence of voltage and temperature on the radiation degradation of the device are analyzed, and the annealing recovery is also explored. The results show that the oxide trapped charge induced by irradiation is the main reason for the degradation of the electrical parameters of the silicon carbide field effect transistor device. The voltage and temperature can affect the final yield of the oxide trapped charge, which causes the device to produce the difference in the degree of degradation after irradiation at different voltages and different temperatures; in the annealing process, due to the annealing of the tunneling of oxide trapped charges, the electrical performance of the device can be restored partially.
-
Keywords:
- silicon carbide field effect transistor /
- total dose /
- voltage /
- temperature /
- annealing effect
[1] 克拉艾C, 西蒙恩 E著 (刘忠立 译) 2008 先进半导体材料及器件的辐射效应 (北京: 国防工业出版社) 第12−20页
Claeys C, Simonen E(translated by Liu L Z)2008 Radiation Effects of Advanced Semiconductor Materials and Devices (Beijing: National Defence Industry Press) pp12−20 (in Chinese)
[2] Bagatin M, Gerardin S, Paccagnella A 2017 Semicond. Sci. Technol. 32 033003Google Scholar
[3] Wang J, Zhao T, Li J 2008 IEEE Trans. Electron Devices 55 1798Google Scholar
[4] Nakamura S 1998 Science 281 956Google Scholar
[5] Akturk A, Goldsman N, Potbhare S, Lelis A 2009 J. Appl. Phys. 105 033703Google Scholar
[6] Sriram K D, Sarit D, John R, Ronald D S 2006 IEEE Trans. Nucl. Sci. 53 3687Google Scholar
[7] Akturk A, McGarrity J M, Potbhare S, Goldsman N 2012 IEEE Trans. Electron Devices 59 3258
[8] Pavel H, Stanislav P 2016 Phys. Status Solidi A 8 160047
[9] Pavel H, Stanislav P 2019 IET Power Electron. 12 3910Google Scholar
[10] Shaneyfelt M R, Schwank J R, Fleetwood D M, Winokur P S, Hughes K L 1990 IEEE Trans. Nucl. Sci. 38 1187
[11] Cooper J A, Melloch M R, Singh R, Agarwal A, Pal-mour J W 2002 IEEE Trans. Electron Devices 49 658Google Scholar
[12] Palmour J W, Edmond J A, Kong H S, Carter C H 1993 Chin. Phys. B 185 461
[13] Khosropour P, Galloway K F, Zupac D 1994 IEEE Trans. Nucl. Sci. 41 555Google Scholar
[14] Hirai H, Kita K 2017 J. Appl. Phys. 56 111302Google Scholar
[15] 陈伟华, 杜磊, 庄奕琪, 包军林、何亮, 张天福, 张雪 2009 物理学报 58 4090Google Scholar
Chen W H, Du L, Zhuang Y Q, Bao J L, He L, Zhang T F, Zhang X 2009 Acta Phys. Sin. 58 4090Google Scholar
[16] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 物理学报 60 116103Google Scholar
Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103Google Scholar
[17] Oldham T R, Mclean F B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar
[18] 万欣 2016 博士学位论文(北京: 清华大学)
Wang X 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[19] Koichi M, Satoshi M, Takuma M, Takashi Y, Takahiro M, Shinobu O 2017 Phys. Status Solidi A 214 1600446Google Scholar
[20] McWhorter P J, Winokur P S 1986 Appl. Phys. Lett. 48 133Google Scholar
[21] James R S, Marty R S, Daniel M F, James A F, Paul E D, Philippe P, Véronique F C 2008 IEEE Trans. Nucl. Sci. 54 1833
[22] Shaneyfelt M R, Schwank J R, Fleetwood D M, Winokur P S, Hughes K L, Sexton F W 1990 IEEE Trans. Nucl. Sci. 37 1632Google Scholar
[23] Li F, Fu D X, Zhang R, Ma H L 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers Dalian, China, April 14–16, 2020 p331
-
-
[1] 克拉艾C, 西蒙恩 E著 (刘忠立 译) 2008 先进半导体材料及器件的辐射效应 (北京: 国防工业出版社) 第12−20页
Claeys C, Simonen E(translated by Liu L Z)2008 Radiation Effects of Advanced Semiconductor Materials and Devices (Beijing: National Defence Industry Press) pp12−20 (in Chinese)
[2] Bagatin M, Gerardin S, Paccagnella A 2017 Semicond. Sci. Technol. 32 033003Google Scholar
[3] Wang J, Zhao T, Li J 2008 IEEE Trans. Electron Devices 55 1798Google Scholar
[4] Nakamura S 1998 Science 281 956Google Scholar
[5] Akturk A, Goldsman N, Potbhare S, Lelis A 2009 J. Appl. Phys. 105 033703Google Scholar
[6] Sriram K D, Sarit D, John R, Ronald D S 2006 IEEE Trans. Nucl. Sci. 53 3687Google Scholar
[7] Akturk A, McGarrity J M, Potbhare S, Goldsman N 2012 IEEE Trans. Electron Devices 59 3258
[8] Pavel H, Stanislav P 2016 Phys. Status Solidi A 8 160047
[9] Pavel H, Stanislav P 2019 IET Power Electron. 12 3910Google Scholar
[10] Shaneyfelt M R, Schwank J R, Fleetwood D M, Winokur P S, Hughes K L 1990 IEEE Trans. Nucl. Sci. 38 1187
[11] Cooper J A, Melloch M R, Singh R, Agarwal A, Pal-mour J W 2002 IEEE Trans. Electron Devices 49 658Google Scholar
[12] Palmour J W, Edmond J A, Kong H S, Carter C H 1993 Chin. Phys. B 185 461
[13] Khosropour P, Galloway K F, Zupac D 1994 IEEE Trans. Nucl. Sci. 41 555Google Scholar
[14] Hirai H, Kita K 2017 J. Appl. Phys. 56 111302Google Scholar
[15] 陈伟华, 杜磊, 庄奕琪, 包军林、何亮, 张天福, 张雪 2009 物理学报 58 4090Google Scholar
Chen W H, Du L, Zhuang Y Q, Bao J L, He L, Zhang T F, Zhang X 2009 Acta Phys. Sin. 58 4090Google Scholar
[16] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 物理学报 60 116103Google Scholar
Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103Google Scholar
[17] Oldham T R, Mclean F B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar
[18] 万欣 2016 博士学位论文(北京: 清华大学)
Wang X 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[19] Koichi M, Satoshi M, Takuma M, Takashi Y, Takahiro M, Shinobu O 2017 Phys. Status Solidi A 214 1600446Google Scholar
[20] McWhorter P J, Winokur P S 1986 Appl. Phys. Lett. 48 133Google Scholar
[21] James R S, Marty R S, Daniel M F, James A F, Paul E D, Philippe P, Véronique F C 2008 IEEE Trans. Nucl. Sci. 54 1833
[22] Shaneyfelt M R, Schwank J R, Fleetwood D M, Winokur P S, Hughes K L, Sexton F W 1990 IEEE Trans. Nucl. Sci. 37 1632Google Scholar
[23] Li F, Fu D X, Zhang R, Ma H L 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers Dalian, China, April 14–16, 2020 p331
计量
- 文章访问数: 6463
- PDF下载量: 98
- 被引次数: 0