搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同栅压下Si-n型金属氧化物半导体场效应管总剂量效应的瞬态特性仿真

张林 马林东 杜林 李艳波 徐先峰 黄鑫蓉

引用本文:
Citation:

不同栅压下Si-n型金属氧化物半导体场效应管总剂量效应的瞬态特性仿真

张林, 马林东, 杜林, 李艳波, 徐先峰, 黄鑫蓉

Transient characteristics simulation of total ionizing dose effect on Si n-metal-oxide-semiconductor field effect transistor under different gate voltage

Zhang Lin, Ma Lin-Dong, Du Lin, Li Yan-Bo, Xu Xian-Feng, Huang Xin-Rong
PDF
HTML
导出引用
  • 为了实现半导体器件在电离辐射环境中电学特性的动态退化过程, 本文基于总剂量效应中陷阱对载流子的俘获/发射过程, 建立了Si-n型金属氧化物半导体场效应管总剂量效应的瞬态特性数值模型. 仿真了不同栅极偏压下, 器件电学特性随累积总剂量的上升而造成的器件退化效应, 并提取了Si/SiO2界面和栅氧化层中陷阱电荷的变化. 仿真发现, 随着累计总剂量的上升, 两个位置处陷阱电荷的数量都趋向于饱和. 当辐照中栅极偏压为正时, 器件阈值电压的退化幅度显著高于辐照偏压为负时的退化幅度. 无论是辐照过程中栅极加正偏压还是反偏压, 都表现出阈值电压的退化幅度随着偏压幅值上升先上升再下降的趋势. 栅极偏压对器件辐照后的退火效应也有一定的影响, 在退火过程中如果栅极偏压不为零, 器件退火后的电学特性恢复幅度比零偏压下的要低一些.
    In this work, we establish a novel numerical model of total ionizing dose effect and use it to simulate the radiation degradation of Si n-metal-oxide-semiconductor field effect transistor (NMOSFET) under different bias voltages. The model is based on the capture/emission process of traps, and is used to simulate the transient characteristics of semiconductor devices under total ionizing dose effect. In the simulation, the changes of trapped holes in Si/SiO2 interface and gate oxide layer are extracted, and it is found that the number of trapped holes at different positions tends to be saturated with the increase of the total dose. When the radiation bias voltage is positive, the degradation amplitude of the threshold voltage is significantly higher than that when the radiation bias voltage is negative. Whether the gate is applied with positive bias or negative bias during the radiation, the degradation amplitude of the threshold voltage shows a trend of first increasing and then decreasing with the increase of the absolute value of radiation bias voltage. Radiation bias voltage also has a certain effect on the annealing effect after radiation. If a gate bias voltage is applied to the device during the annealing, the electrical characteristics recovery amplitude of the device is lower than that under zero bias voltage.
      通信作者: 张林, zhanglin_dk@chd.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFC2200300)、上海市自然科学基金(批准号: 20ZR1435700)和陕西省重点研发计划(批准号: 2021KW-13)资助的课题.
      Corresponding author: Zhang Lin, zhanglin_dk@chd.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFC2200300), the Natural Science Foundation of Shanghai, China (Grant No. 20ZR1435700), and the Key Research and Development Program of Shaanxi Province, China (Grant No. 2021KW-13).
    [1]

    Barth J L, Dyer C S, Stassinopoulos E G 2003 IEEE Trans. Nucl. Sci. 50 466Google Scholar

    [2]

    Oldham T R, Mclean B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [3]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103Google Scholar

    [4]

    Jiang J Z, Shu W, Chong K S, Lin T, Zwa Lwin N K, Chang J S, Liu J Y 2016 IEEE International Symposium on Circuits and Systems Montreal Montreal, Canada, May 22–25, 2016 p5

    [5]

    Xie X D, Yang Z Z, Deng M X, Chen K B, Li W 2019 IEEE Trans. Device Mater. Reliab. 19 242Google Scholar

    [6]

    Dodd P E, Shaneyfelt M R, Schwank J R, Felix J A 2010 IEEE Trans. Nucl. Sci. 57 1747Google Scholar

    [7]

    Hughes H L, Benedetto J M 2003 IEEE Trans. Nucl. Sci. 50 500Google Scholar

    [8]

    刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 物理学报 60 116103Google Scholar

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103Google Scholar

    [9]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Chen M, Bi D W, Zou S C 2011 IEEE Trans. Nucl. Sci. 58 1324Google Scholar

    [10]

    Johnston A H, Swimm R H, Allen G R, Miyahira T F 2009 IEEE Trans. Nucl. Sci. 56 1941Google Scholar

    [11]

    McLain M, Barnaby H J, Holbert K E, et al. 2007 IEEE Trans. Nucl. Sci. 54 2210Google Scholar

    [12]

    周枭, 罗萍, 凌荣勋, 吴昱操, 蒋鹏凯 2019 微电子学 49 842

    Zhou X, L P, Ling R X, Wu Y C, Jiang P K 2019 Microelectronic. 49 842

    [13]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, et al. 2008 IEEE Trans. Nucl. Sci. 55 1833Google Scholar

    [14]

    顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天 2021 物理学报 70 166101Google Scholar

    Gu Z Q, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Zhang H, Ju A A, Liu Y T 2021 Acta Phys. Sin. 70 166101Google Scholar

    [15]

    Banerje G, Niu G, Cressler J D, Clark S D, Palmer M J, Ahlgren D C 1999 IEEE Trans. Nucl. Sci. 46 1620Google Scholar

    [16]

    Hjalmarson H P, Pease R L, Witczak S C, et al. 2003 IEEE Trans. Nucl. Sci. 50 1901Google Scholar

    [17]

    Boch J, Saigne F, Touboul A D, et al. 2006 Appl. Phys. Lett. 88 232113Google Scholar

    [18]

    彭超, 雷志锋, 张战刚, 何玉娟, 黄云, 恩云飞 2019 电子学报 47 1755Google Scholar

    Peng C, Lei Z F, Zhang Z G, He Y J, Huang Y, En Y F 2019 Acta Electron. Sin. 47 1755Google Scholar

    [19]

    张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉 2022 物理学报 71 058502Google Scholar

    Zhang J X, Wang X, Guo H X, Feng J, Lü L, Li P, Yan Y Y, Wu X X, Wang H 2022 Acta Phys. Sin. 71 058502Google Scholar

    [20]

    张书豪, 袁章亦安, 乔明, 张波 2022 物理学报 71 107301Google Scholar

    Zhang S H, Yuan Z Y A, Qiao M, Zhang B 2022 Acta Phys. Sin. 71 107301Google Scholar

    [21]

    Kimpton D, Kerr J 1994 Solid State Electron. 37 153Google Scholar

  • 图 1  仿真中采用的Si-NMOSFET器件结构

    Fig. 1.  Diagram of Si-NMOSFET in simulation.

    图 2  Si-NMOSFET的转移特性

    Fig. 2.  Transfer characteristics of Si-NMOSFET.

    图 3  (a) 界面陷阱电荷密度; (b)氧化层陷阱电荷浓度

    Fig. 3.  (a) Trapped holes density in Si/SiO2 interface; (b) trapped holes concentration in oxide layer.

    图 4  氧化层中的陷阱电荷分布

    Fig. 4.  Distribution of trapped holes in oxide layer.

    图 5  栅氧附近的电场分布

    Fig. 5.  Distribution of electric field of gate oxide layer and nearby area

    图 6  不同辐照偏压下Si-NMOSFET的转移特性

    Fig. 6.  Transfer characteristics of Si-NMOSFET under the different radiation voltage biases.

    图 7  不同辐照偏压下1 Mrad辐照后器件的阈值电压

    Fig. 7.  Threshold voltage after 1 Mrad radiation under the different radiation voltage biases.

    图 8  不同辐照偏压下陷阱电荷 (a)界面陷阱电荷随累计总剂量变化; (b)辐照后氧化层陷阱电荷的分布

    Fig. 8.  Trapped holes under different radiation biases voltage: (a) Trapped interface holes with accumulated total dose; (b) distribution of trapped holes in oxide layer after irradiation.

    图 9  Si-NMOSFET辐照后不同偏压下的退火效应

    Fig. 9.  Annealing effect of Si-NMOSFET under different bias voltages after radiation.

    图 10  不同偏压下退火后的陷阱电荷 (a)界面陷阱电荷密度; (b)氧化层陷阱电荷浓度

    Fig. 10.  Trapped holes after annealing under the different bias voltages: (a) Trapped interface holes density; (b) trapped holes concentration in oxide layer

  • [1]

    Barth J L, Dyer C S, Stassinopoulos E G 2003 IEEE Trans. Nucl. Sci. 50 466Google Scholar

    [2]

    Oldham T R, Mclean B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [3]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103Google Scholar

    [4]

    Jiang J Z, Shu W, Chong K S, Lin T, Zwa Lwin N K, Chang J S, Liu J Y 2016 IEEE International Symposium on Circuits and Systems Montreal Montreal, Canada, May 22–25, 2016 p5

    [5]

    Xie X D, Yang Z Z, Deng M X, Chen K B, Li W 2019 IEEE Trans. Device Mater. Reliab. 19 242Google Scholar

    [6]

    Dodd P E, Shaneyfelt M R, Schwank J R, Felix J A 2010 IEEE Trans. Nucl. Sci. 57 1747Google Scholar

    [7]

    Hughes H L, Benedetto J M 2003 IEEE Trans. Nucl. Sci. 50 500Google Scholar

    [8]

    刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 物理学报 60 116103Google Scholar

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103Google Scholar

    [9]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Chen M, Bi D W, Zou S C 2011 IEEE Trans. Nucl. Sci. 58 1324Google Scholar

    [10]

    Johnston A H, Swimm R H, Allen G R, Miyahira T F 2009 IEEE Trans. Nucl. Sci. 56 1941Google Scholar

    [11]

    McLain M, Barnaby H J, Holbert K E, et al. 2007 IEEE Trans. Nucl. Sci. 54 2210Google Scholar

    [12]

    周枭, 罗萍, 凌荣勋, 吴昱操, 蒋鹏凯 2019 微电子学 49 842

    Zhou X, L P, Ling R X, Wu Y C, Jiang P K 2019 Microelectronic. 49 842

    [13]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, et al. 2008 IEEE Trans. Nucl. Sci. 55 1833Google Scholar

    [14]

    顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天 2021 物理学报 70 166101Google Scholar

    Gu Z Q, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Zhang H, Ju A A, Liu Y T 2021 Acta Phys. Sin. 70 166101Google Scholar

    [15]

    Banerje G, Niu G, Cressler J D, Clark S D, Palmer M J, Ahlgren D C 1999 IEEE Trans. Nucl. Sci. 46 1620Google Scholar

    [16]

    Hjalmarson H P, Pease R L, Witczak S C, et al. 2003 IEEE Trans. Nucl. Sci. 50 1901Google Scholar

    [17]

    Boch J, Saigne F, Touboul A D, et al. 2006 Appl. Phys. Lett. 88 232113Google Scholar

    [18]

    彭超, 雷志锋, 张战刚, 何玉娟, 黄云, 恩云飞 2019 电子学报 47 1755Google Scholar

    Peng C, Lei Z F, Zhang Z G, He Y J, Huang Y, En Y F 2019 Acta Electron. Sin. 47 1755Google Scholar

    [19]

    张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉 2022 物理学报 71 058502Google Scholar

    Zhang J X, Wang X, Guo H X, Feng J, Lü L, Li P, Yan Y Y, Wu X X, Wang H 2022 Acta Phys. Sin. 71 058502Google Scholar

    [20]

    张书豪, 袁章亦安, 乔明, 张波 2022 物理学报 71 107301Google Scholar

    Zhang S H, Yuan Z Y A, Qiao M, Zhang B 2022 Acta Phys. Sin. 71 107301Google Scholar

    [21]

    Kimpton D, Kerr J 1994 Solid State Electron. 37 153Google Scholar

计量
  • 文章访问数:  1386
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-05-05
  • 上网日期:  2023-05-06
  • 刊出日期:  2023-07-05

/

返回文章
返回