搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倒置四结(IMM4J)太阳电池中InGaAs(1.0 eV)和InGaAs(0.7 eV)子电池高能电子辐照退火效应

张延清 齐春华 周佳明 刘超铭 马国亮 蔡勖升 王天琦 霍明学

引用本文:
Citation:

倒置四结(IMM4J)太阳电池中InGaAs(1.0 eV)和InGaAs(0.7 eV)子电池高能电子辐照退火效应

张延清, 齐春华, 周佳明, 刘超铭, 马国亮, 蔡勖升, 王天琦, 霍明学

Thermal annealing effects of InGaAs (1.0 eV) and InGaAs (0.7 eV) sub-cells of inverted metamorphic four junction (IMM4J) solar cells under 1 MeV electron irradiation

Zhang Yan-Qing, Qi Chun-Hua, Zhou Jia-Ming, Liu Chao-Ming, Ma Guo-Liang, Tsai Hsu-Sheng, Wang Tian-Qi, Huo Ming-Xue
PDF
HTML
导出引用
  • 本文为研究1 MeV电子辐照倒置四结(IMM4J)太阳电池InGaAs(1.0 eV)和 InGaAs(0.7 eV)关键子电池的退火效应, 将辐照后的两种子电池在60—180 ℃温度范围累计退火180 min, 并对不同退火温度、退火时间下的两种子电池进行了光IV测试、暗IV测试和光谱响应测试. 实验结果表明两种子电池的开路电压Voc、短路电流Isc和最大输出功率Pmax随着退火时间的延长逐渐恢复, 温度越高, 恢复程度越大. 在相同的退火条件下, InGaAs(1.0 eV)子电池的恢复程度比InGaAs(0.7 eV)子电池小. 本文通过对暗特性曲线进行双指数模型拟合, 得到不同退火条件下两种子电池的串联电阻Rs、并联电阻Rsh、扩散电流Is1、复合电流Is2. 结果表明在退火过程中两种子电池的Rsh逐渐增大, Rs, Is1Is2逐渐减小. 温度越高, 退火时间越长, 恢复程度越大. 在退火60 min后两种子电池的Voc, IscPmax恢复程度均可达到整体恢复程度的85%以上. InGaAs(1.0 eV)子电池的Is1Is2的恢复程度远大于InGaAs(0.7 eV). 本文建立了短路电流密度Jsc和缺陷浓度N的等效模型, 以此计算得到InGaAs(1.0 eV)和InGaAs(0.7 eV)两种子电池的热退火激活能分别为0.38 eV和0.26 eV.
    In this work, thermal annealing effects of InGaAs (1.0 eV) and InGaAs (0.7 eV) sub-cells for inverted metamorphic four junction (IMM4J) solar cells after being irradiated by 1 MeV electrons are investigated by using light I-V characteristic, dark I-V characteristic and spectral response. Annealing temperature range is 60–180 ℃ and annealing time is 0-180 min. The results indicate that the open-circuit voltage Voc, short-circuit current Isc, and maximum power Pmax of two sub-cells are gradually recovered with annealing time increasing, and the rate of recovery increases with annealing temperature increasing. Besides, the recovery rate of InGaAs (1.0 eV) sub-cell is less than that of InGaAs (0.7 eV) sub-cell under the same annealing temperature and time. Double exponential model is used to fit the dark I-V curve for the key parameters (the serial resistant Rs, the parallel resistant Rsh, the diffusion current Is1 and the recombination current Is2). It is found that Rs, Is1 and Is2 of two sub-cells decrease gradually and Rsh increases during annealing and the rate of recovery increases with annealing temperature rising. However, the recovery of Is1 and Is2 of InGaAs(1.0 eV) are much greater than that of InGaAs(0.7 eV). The equivalent model between short-circuit current density (Jsc) and defect concentration (N) induced by irradiation and annealing is established. N changes follow the first reaction kinetics, and the rate constant follows the Arrhenius equation with the annealing temperature. Therefore, the thermal annealing activation energy of InGaAs(1.0 eV) and InGaAs(0.7 eV) sub-cells are 0.38 eV and 0.26 eV, respectively. These efforts will contribute to the IMM4J solar cells, in particular, to space-based applications.
      通信作者: 齐春华, qichunhua@hit.edu.cn ; 刘超铭, cmliu@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11805045, 61704039, 61771167和11775061)、强脉冲辐射环境模拟与效应国家重点实验室(批准号: SKLIPR2015, SKLIPR1912)和哈尔滨工业大学科研创新基金(批准号: HIT.NSRIF.2019007, HIT.NSRIF.20190028)资助的课题
      Corresponding author: Qi Chun-Hua, qichunhua@hit.edu.cn ; Liu Chao-Ming, cmliu@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11805045, 61704039, 61771167, 11775061), the State Key Laboratory for Environmental Simulation and Effects of Intense Pulsed Radiation, China (Grant Nos. SKLIPR2015, SKLIPR1912), and the Research and Innovation Fund of Harbin Institute of Technology, China (Grant Nos. HIT.NSRIF.2019007, HIT.NSRIF.20190028)
    [1]

    Asim N, Sopian K, Ahmadi S, Saeedfar K, Alghoul M A, Saadatian O, Zaidi S H 2012 Renewable Sustainable Energy Rev. 16 5834Google Scholar

    [2]

    Imaizumi M, Kawakita S, Sumita T, Takamoto T, Ohshima T Yamaguchi M 2005 Prog. Photovoltaics 13 529Google Scholar

    [3]

    France R M, Geisz J F, García I, Steiner M A, McMahon W E, Friedman D J, Moriarty T E, Osterwald C, Ward J S, Duda A, Young M, Olavarria W J 2015 IEEE J. Photovoltaics 5 432Google Scholar

    [4]

    宋明辉, 王笃祥, 毕京锋, 陈文浚, 李明阳, 李森林, 刘冠洲, 吴超瑜 2017 物理学报 66 188801Google Scholar

    Song M H, Wang D X, Bi J F, Chen W J, Li M Y, Li S L, Liu G Z, Wu C Y 2017 Acta Phys. Sin. 66 188801Google Scholar

    [5]

    Tatavarti R, Wibowo A, Martin G, Tuminello F, Youtsey C, Hillier G, Pan N 2010 IEEE 35 th Photovoltaic Specialists Conference, Honolulu, Hawaii, USA, June 20−25, 2010 p2125

    [6]

    卢建娅, 谭明, 杨文献, 陆书龙, 张玮, 黄健 2016 半导体光电 37 688

    Lu J Y, Tan M, Yang W X, Lu S L, Zhang W, Huang J 2016 Semicond. Optoelectron. 37 688

    [7]

    Boisvert J, Law D, King R, Rehder E, Chiu P, Bhusari D, Fetzer C, Liu X, Hong W, Mesropian S, Woo R, Edmondson K, Cotal H, Krut D, Singer S, Wierman S, Karam N H 2013 IEEE 39th Photovoltaic Specialists Conference Tampa, Florida, USA, Jun 16−21, 2013 p2790

    [8]

    Zhang Y Q, Huo M X, Wu Y Y, Sun C Y, Zhao H J, Geng H B, Wang S, Liu R B, Sun Q 2017 Chin. Phys. B 26 088801Google Scholar

    [9]

    Loo R, Knechtli R C, Kamath G S 1978 IEEE 13th Photovoltaic Specialists Conference Washington DC, USA, Jun 5, 1978 p562

    [10]

    Loo R Y, Kamath G S, Li S S 1990 IEEE Trans. Electron Devices 37 485Google Scholar

    [11]

    Loo R Y, Kamath G S 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1087

    [12]

    Heinbockel J H, Conway E J, Walker G H 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1085

    [13]

    Walker G H, Conway E J 1978 J. Electrochem. Soc. 125 676Google Scholar

    [14]

    齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 物理学报 64 108802Google Scholar

    Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar

    [15]

    Xiang X B, Du W H, Liao X B, Chang X L 2001 Chin. J. Semicond. 22 710

    [16]

    Yamaguchi M, Okuda T, Taylor S J, Takamoto T, Ikeda E, Kurita H 1997 Appl. Phys. Lett. 70 1566Google Scholar

    [17]

    Sasaki T, Arafune K, Metzger W, Romero M J, Jones K, Tassim M A, Ohshita Y, Yamaguchi M 2009 Sol. Energy Mater. Sol. Cells 93 936Google Scholar

    [18]

    Angelis N D, Bourgoin J C, Takamoto T, Khan A, Yamaguchi M 2001 Sol. Energy Mater. Sol. Cells 66 495Google Scholar

    [19]

    Bourgoin J C, Zazoui M 2002 Semicond. Sci. Technol. 17 453Google Scholar

    [20]

    Bourgoin J C, Angelis N D 2001 Sol. Energy Mater. Sol. Cells 66 467Google Scholar

    [21]

    Amekura H, Kishimoto N, Saito T 1995 J. Appl. Phys. 77 4984Google Scholar

    [22]

    Kaminski A, Marchand J J, Fave A, Laugier A 1997 IEEE 26th Photovoltaic Specialists Conference Anaheim, California, USA, September 29−October 3, 1997 p203

  • 图 1  InGaAs (1.0 eV)和InGaAs (0.7 eV) 子电池结构示意图 (a) InGaAs (1.0 eV); (b) InGaAs (0.7 eV)

    Fig. 1.  Configurations of the InGaAs (1.0 eV) and InGaAs (0.7 eV) sub-cells: (a) InGaAs (1.0 eV); (b) InGaAs (0.7 eV).

    图 2  InGaAs(1.0 eV)和InGaAs(0.7 eV)子电池I-V特性曲线 (a) InGaAs (1.0 eV); (b) InGaAs (0.7 eV)

    Fig. 2.  IV curves of the InGaAs(1.0 eV) and InGaAs (0.7 eV) sub-cells: (a) InGaAs(1.0 eV); (b) InGaAs (0.7 eV).

    图 3  1 MeV电子在InGaAs (1.0 eV)和InGaAs (0.7 eV)子电池中运动轨迹 (a) InGaAs (1.0 eV); (b) InGaAs(0.7 eV)

    Fig. 3.  The trajectory of 1 MeV electron in InGaAs (1.0 eV) and InGaAs (0.7 eV) sub cells: (a) InGaAs(1.0 eV) ; (b) InGaAs (0.7 eV).

    图 4  AFM测试1 MeV电子辐照InGaAs子电池前后表面形貌及横向剖面对比图 (a)未辐照子电池; (b)辐照1 × 1015 cm–2后子电池; (c)横向剖面图

    Fig. 4.  Surface morphology and cross section of InGaAs sub-cell before and after 1 MeV electron irradiation by AFM: (a) The unirradiated sub-cell; (b) the sub-cell after 1 × 1015 cm–2 electron irradiation; (c) the cross section comparison.

    图 5  不同温度退火不同时间下两种InGaAs子电池Voc, IscPmax变化曲线

    Fig. 5.  Normalized Voc, Isc and Pmax curves of InGaAs sub-cells anneal at different annealing temperatures for different times.

    图 6  InGaAs (1.0 eV)子电池不同温度退火不同时间的EQE曲线

    Fig. 6.  EQE curves of InGaAs (1.0 eV) sub-cells anneal at different annealing temperatures for different times.

    图 7  不同温度退火不同时间的InGaAs (0.7 eV)子电池EQE曲线

    Fig. 7.  EQE curves of InGaAs (0.7 eV) sub-cells anneal at different annealing temperatures for different times.

    图 8  两种InGaAs子电池退火不同时间拟合所得Rs, Rsh, Is1Is2的变化曲线图

    Fig. 8.  Rs, Rsh, Is1 and Is2 curves of InGaAs sub-cells annealing at different temperatures.

    图 9  缺陷浓度变化系数对数ln(α)与温度倒数(1/T)的关系曲线

    Fig. 9.  Curve of logarithm of the defect concentration change coefficient (ln(α)) with reciprocal of temperature (1/T).

    表 1  1 MeV辐照前后InGaAs(1.0 eV)子电池的Voc, IscPmax

    Table 1.  Voc, Isc and Pmax of InGaAs(1.0 eV) sub-cells before and after electron irradiated.

    InGaAs (1.0 eV)Voc/VIsc/mAPmax/mW
    未辐照0.508918.257.30
    辐照后0.309311.573.56
    剩余率60.8%63.4%48.8%
    下载: 导出CSV

    表 2  1 MeV辐照前后InGaAs (0.7 eV)子电池的Voc, IscPmax

    Table 2.  Voc, Isc and Pmax of InGaAs (0.7 eV) sub-cells before and after electron irradiated.

    InGaAs (0.7 eV)Voc/VIsc/mAPmax/mW
    未辐照0.252911.6601.940
    辐照后0.14286.9500.653
    剩余率56.5%59.6%33.7%
    下载: 导出CSV

    表 3  辐照前后InGaAs (1.0 eV)子电池Rs, Rsh, Is1Is2

    Table 3.  Rs, Rsh, Is1 and Is2 of InGaAs (1.0 eV) sub-cells before and after electron irradiated.

    InGaAs (1.0 eV)RsRshIs1/AIs2/A
    未辐照1.54.3 × 1043.6 × 10–74.2 × 10–7
    辐照后6.25.3 × 1036.4 × 10–56.5 × 10–5
    剩余率4.13%0.123%178%155%
    下载: 导出CSV

    表 4  辐照前后InGaAs (0.7 eV)子电池的Rs, Rsh, Is1Is2

    Table 4.  Rs, Rsh, Is1 and Is2 of InGaAs (0.7 eV) sub-cells before and after electron irradiated.

    InGaAs (0.7 eV)RsRshIs1/AIs2/A
    未辐照2.91.3 × 1042.7 × 10–53.3 × 10–5
    辐照后7.51.4 × 1031.4 × 10–41.9 × 10–4
    剩余率2.59%0.108%5.19%5.76%
    下载: 导出CSV

    表 5  辐照及热退火过程中InGaAs (1.0 eV)子电池Jsc变化

    Table 5.  Jsc of InGaAs (1.0 eV) sub-cell in irradiation and thermal annealing.

    InGaAs (1.0 eV) 退火温度未辐照Jsc/mA)退火时间 Jsc/min·mA–1
    03510153060120180
    60 ℃13.5710.2610.2610.2810.2910.3110.3810.4110.4810.53
    90 ℃13.3110.1910.2110.2310.2810.3010.3410.3910.4110.46
    120 ℃13.7510.4110.4610.4910.5710.6510.7810.7910.8110.84
    150 ℃13.5110.3110.4310.5910.8411.0711.6811.7311.8311.98
    180 ℃13.5510.3810.7210.9611.4611.9012.5012.6712.8512.88
    下载: 导出CSV

    表 6  辐照及热退火过程中InGaAs (0.7 eV)子电池Jsc变化

    Table 6.  Jsc of InGaAs (0.7 eV) sub-cell in irradiation and thermal annealing.

    InGaAs (0.7 eV) 退火温度未辐照 Jsc/mA退火时间 Jsc/min·mA–1
    03510153060120180
    60 ℃8.176.276.276.276.316.326.366.406.456.47
    90 ℃8.336.466.476.486.536.536.556.596.636.67
    120 ℃8.286.196.216.226.246.286.336.356.426.44
    150 ℃8.246.156.186.216.256.296.456.716.796.82
    180 ℃8.256.26.256.36.446.516.87.347.597.69
    下载: 导出CSV

    表 7  不同退火温度下InGaAs (1.0 eV)和InGaAs (0.7 eV)子电池缺陷浓度变化系数α拟合值

    Table 7.  Fitting value of the variation defect concentration coefficient(α) of InGaAs sub-cell at different annealing temperatures.

    退火温度α[InGaAs (1.0 eV)/s–1]α[InGaAs (0.7 eV)/s–1]
    60 ℃1.74 × 10–31.47 × 10–3
    90 ℃4.09 × 10–32.43 × 10–3
    120 ℃7.33 × 10–34.70 × 10–3
    150 ℃2.52 × 10–27.38 × 10–3
    180 ℃5.72 × 10–21.82 × 10–2
    下载: 导出CSV
  • [1]

    Asim N, Sopian K, Ahmadi S, Saeedfar K, Alghoul M A, Saadatian O, Zaidi S H 2012 Renewable Sustainable Energy Rev. 16 5834Google Scholar

    [2]

    Imaizumi M, Kawakita S, Sumita T, Takamoto T, Ohshima T Yamaguchi M 2005 Prog. Photovoltaics 13 529Google Scholar

    [3]

    France R M, Geisz J F, García I, Steiner M A, McMahon W E, Friedman D J, Moriarty T E, Osterwald C, Ward J S, Duda A, Young M, Olavarria W J 2015 IEEE J. Photovoltaics 5 432Google Scholar

    [4]

    宋明辉, 王笃祥, 毕京锋, 陈文浚, 李明阳, 李森林, 刘冠洲, 吴超瑜 2017 物理学报 66 188801Google Scholar

    Song M H, Wang D X, Bi J F, Chen W J, Li M Y, Li S L, Liu G Z, Wu C Y 2017 Acta Phys. Sin. 66 188801Google Scholar

    [5]

    Tatavarti R, Wibowo A, Martin G, Tuminello F, Youtsey C, Hillier G, Pan N 2010 IEEE 35 th Photovoltaic Specialists Conference, Honolulu, Hawaii, USA, June 20−25, 2010 p2125

    [6]

    卢建娅, 谭明, 杨文献, 陆书龙, 张玮, 黄健 2016 半导体光电 37 688

    Lu J Y, Tan M, Yang W X, Lu S L, Zhang W, Huang J 2016 Semicond. Optoelectron. 37 688

    [7]

    Boisvert J, Law D, King R, Rehder E, Chiu P, Bhusari D, Fetzer C, Liu X, Hong W, Mesropian S, Woo R, Edmondson K, Cotal H, Krut D, Singer S, Wierman S, Karam N H 2013 IEEE 39th Photovoltaic Specialists Conference Tampa, Florida, USA, Jun 16−21, 2013 p2790

    [8]

    Zhang Y Q, Huo M X, Wu Y Y, Sun C Y, Zhao H J, Geng H B, Wang S, Liu R B, Sun Q 2017 Chin. Phys. B 26 088801Google Scholar

    [9]

    Loo R, Knechtli R C, Kamath G S 1978 IEEE 13th Photovoltaic Specialists Conference Washington DC, USA, Jun 5, 1978 p562

    [10]

    Loo R Y, Kamath G S, Li S S 1990 IEEE Trans. Electron Devices 37 485Google Scholar

    [11]

    Loo R Y, Kamath G S 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1087

    [12]

    Heinbockel J H, Conway E J, Walker G H 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1085

    [13]

    Walker G H, Conway E J 1978 J. Electrochem. Soc. 125 676Google Scholar

    [14]

    齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 物理学报 64 108802Google Scholar

    Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar

    [15]

    Xiang X B, Du W H, Liao X B, Chang X L 2001 Chin. J. Semicond. 22 710

    [16]

    Yamaguchi M, Okuda T, Taylor S J, Takamoto T, Ikeda E, Kurita H 1997 Appl. Phys. Lett. 70 1566Google Scholar

    [17]

    Sasaki T, Arafune K, Metzger W, Romero M J, Jones K, Tassim M A, Ohshita Y, Yamaguchi M 2009 Sol. Energy Mater. Sol. Cells 93 936Google Scholar

    [18]

    Angelis N D, Bourgoin J C, Takamoto T, Khan A, Yamaguchi M 2001 Sol. Energy Mater. Sol. Cells 66 495Google Scholar

    [19]

    Bourgoin J C, Zazoui M 2002 Semicond. Sci. Technol. 17 453Google Scholar

    [20]

    Bourgoin J C, Angelis N D 2001 Sol. Energy Mater. Sol. Cells 66 467Google Scholar

    [21]

    Amekura H, Kishimoto N, Saito T 1995 J. Appl. Phys. 77 4984Google Scholar

    [22]

    Kaminski A, Marchand J J, Fave A, Laugier A 1997 IEEE 26th Photovoltaic Specialists Conference Anaheim, California, USA, September 29−October 3, 1997 p203

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 刘慧桢, 刘蓓, 董家斌, 李建鹏, 曹子修, 刘越, 孟汝涛, 张毅. 不同环境下硫化镉/铜基薄膜异质结退火对太阳电池性能调控. 物理学报, 2023, 72(8): 088802. doi: 10.7498/aps.72.20230105
    [3] 高旭东, 杨得草, 魏雯静, 李公平. 电子束对ZnO和TiO2辐照损伤的模拟计算. 物理学报, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [4] 顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天. 不同应力下碳化硅场效应晶体管器件总剂量效应及退火特性. 物理学报, 2021, 70(16): 166101. doi: 10.7498/aps.70.20210515
    [5] 李俊炜, 王祖军, 石成英, 薛院院, 宁浩, 徐瑞, 焦仟丽, 贾同轩. GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟. 物理学报, 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [6] 高扬, ChandanPandey, 孔德胤, 王春, 聂天晓, 赵巍胜, 苗俊刚, 汪力, 吴晓君. 退火效应增强铁磁异质结太赫兹发射实验及机理. 物理学报, 2020, 69(20): 200702. doi: 10.7498/aps.69.20200526
    [7] 封国宝, 曹猛, 崔万照, 李军, 刘纯亮, 王芳. 电子辐照电介质样品带电泄放弛豫特性研究. 物理学报, 2017, 66(6): 067901. doi: 10.7498/aps.66.067901
    [8] 宋明辉, 王笃祥, 毕京锋, 陈文浚, 李明阳, 李森林, 刘冠洲, 吴超瑜. 空间用倒装三结太阳能电池及其抗辐射性能研究. 物理学报, 2017, 66(18): 188801. doi: 10.7498/aps.66.188801
    [9] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [10] 马国亮, 李兴冀, 杨剑群, 刘超铭, 田丰, 侯春风. 电子辐照LDPE/MWCNTs复合材料的熔融与结晶行为. 物理学报, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [11] 马国亮, 杨剑群, 李兴冀, 刘超铭, 侯春风. 电子辐照聚乙烯/碳纳米管拉伸变形机理. 物理学报, 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [12] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬. 电子辐照下GaAs/Ge太阳电池载流子输运机理研究. 物理学报, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [13] 全荣辉, 韩建伟, 张振龙. 电子辐照下聚合物介质内部放电模型研究. 物理学报, 2013, 62(24): 245205. doi: 10.7498/aps.62.245205
    [14] 王凯悦, 李志宏, 高凯, 朱玉梅. 电子辐照金刚石的光致发光研究. 物理学报, 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [15] 赵慧杰, 何世禹, 孙彦铮, 孙强, 肖志斌, 吕伟, 黄才勇, 肖景东, 吴宜勇. 100 keV质子辐照对空间GaAs/Ge太阳电池光电效应的影响. 物理学报, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [16] 胡建民, 吴宜勇, 钱勇, 杨德庄, 何世禹. GaInP/GaAs/Ge三结太阳电池的电子辐照损伤效应. 物理学报, 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [17] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [18] 冯锡淇, 邓棠波. 钨酸铅晶体中的偶极缺陷. 物理学报, 2003, 52(8): 2066-2074. doi: 10.7498/aps.52.2066
    [19] 王震遐, 李学鹏, 余礼平, 马余刚, 何国伟, 胡岗, 陈一, 段晓峰. 电子辐照诱发固态相变导致的氮化硼纳米结构生长. 物理学报, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
    [20] 魏光普. 非晶硅太阳电池的X射线辐照效应及其低能域光电流光谱观测. 物理学报, 1992, 41(3): 485-490. doi: 10.7498/aps.41.485
计量
  • 文章访问数:  6665
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-15
  • 修回日期:  2020-07-07
  • 上网日期:  2020-11-09
  • 刊出日期:  2020-11-20

/

返回文章
返回