搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子辐照电介质样品带电泄放弛豫特性研究

封国宝 曹猛 崔万照 李军 刘纯亮 王芳

引用本文:
Citation:

电子辐照电介质样品带电泄放弛豫特性研究

封国宝, 曹猛, 崔万照, 李军, 刘纯亮, 王芳

Transient characteristics of discharge of polymer sample after electon-beam irradiation

Feng Guo-Bao, Cao Meng, Cui Wan-Zhao, Li Jun, Liu Chun-Liang, Wang Fang
PDF
导出引用
  • 电子照射电介质材料的带电效应对介质微波部件的微放电现象有着重要影响.本文采用数值模拟的方法研究电子照射介质样品带电后的弛豫泄放过程.对入射电子与样品的相互作用考虑了弹性和非弹性碰撞过程,采用蒙特卡罗方法进行数值模拟;对沉积在样品内部的电荷泄漏过程则采用考虑电荷迁移、扩散以及俘获等过程的时域有限差分法进行处理.模拟了介质样品在带电泄放弛豫过程中的内部电荷和电位分布以及弛豫暂态特性,并分析了包括样品厚度、电子迁移率以及俘获密度在内的样品参数对泄放弛豫过程的影响.计算结果表明:在介质样品带电泄放的弛豫过程中,样品内部的总电荷量和表面电位逐渐减弱到一个与俘获密度直接相关的终态值;迁移率的增大会类线性比例地减少泄放时间常数,电荷泄放量随着样品厚度的增加呈现先增后减的趋势,而泄放量比随俘获密度增大从1近指数关系地减小为零.
    Charging effect of dielectric material due to electron beam irradiation has a significant influence on the microdischarge phenomenon of dielectric microwave component by multipactor. The discharge process caused by internal electron leakage can relieve this undesirable charging effect. In this paper, we study the transient discharge characteristics of a dielectric sample after being irradiated by electron beam through numerical simulation. Both the charging and discharging processes of a dielectric sample are considered with a comprehensive model. The Monte-Carlo method is used to simulate the interaction between primary electrons and material atoms before the irradiation is interrupted, including elastic scattering and inelastic scattering. The elastic scattering is calculated with the Mott scattering model, and the inelastic scattering is simulated with the fast secondary electron model or Penn model according to electron energy. Meanwhile, the transport process of internal charges in the sample during the discharge period is simulated including the charge diffusion under the force of charge density gradient, the drift due to built-in E-field, and the trap caused by material defect. In this work, the discharge process is taken to begin at the very moment of charging reaching saturation, with the internal charges kept almost unchanged. A polymer material widely used in advanced component is considered in this work due to its remarkable charging effects. Distributions of internal charges of the sample during the discharge process are simulated, and influences of sample parameters, including sample thickness, electron mobility and trap density in the discharge process, are analyzed. The results show that internal charges move to the bottom of the sample during the discharging, leading to the surface potential reaching an ultimate state which is determined by trap density of the material. The position corresponding to the maximum internal charge density shifts towards the grounded bottom. Although a sample with a larger electron mobility means a faster discharge process, fewer free electrons in this sample result in less discharge quantity. The time constant of discharge process decreases with the increase of sample electron mobility in the form of similar linearity. Although a sample with a larger thickness can hold more internal charges, the increase of sample thickness may increase the distance of internal charges leak yet. Hence, the quantity of discharge first increases and then decreases with the increase of sample thickness. In addition, a larger trap density of a dielectric sample makes charge leak harder, resulting in a lower discharge quantity. Finally, the proportion of discharge quantity in saturated charge quantity decreases from 1 to 0 exponentially with the increase of sample trap density. As a conclusion, those sample parameters have their corresponding effects on discharge characteristics by means of different physical mechanisms. Sample electron mobility determines the discharge time constant obviously by affecting the electron transport speed. The sample thickness affects the discharge quantity by shifting the charging balance mode, and material defect impedes part of discharge quantity from trapping internal free electrons. This simulation method and results can help to recede the charging effect and estimate the evolution charging and discharging states of dielectric material during and after electron beam irradiation.
      通信作者: 崔万照, cuiwanzhao@163.com
    • 基金项目: 国家自然科学基金重点项目(批准号:U1537211)、中国博士后科学基金(批准号:2016M602944XB)和空间微波技术重点实验室基金(批准号:9140C530101140C53231,9140C530101150C53011)资助的课题.
      Corresponding author: Cui Wan-Zhao, cuiwanzhao@163.com
    • Funds: Project supported by the Key Program of National Natural Science Foundation of China (Grant No. U1537211), the China Postdoctoral Science Foundation (Grant No. 2016M602944XB), and the Foundation of National Key Laboratory of Space Microwave Technology, China (Grant Nos. 9140C530101140C53231, 9140C530101150C53011).
    [1]

    Zhang N, Cui W Z, Hu T C, Wang X B 2011 Space Elec. Tech. 38 38 (in Chinese) [张娜, 崔万照, 胡天存, 王新波 2011 空间电子技术 38 38]

    [2]

    Chen J R, Wu X D 1999 Space Elec. Tech. 1 19 (in Chinese) [陈建荣, 吴须大 1999 空间电子技术 1 19]

    [3]

    Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D 2005 Astrophys. J. 12 053102

    [4]

    Tan C C, Ong K S 2010 Rev. Sci. Instrum. 81 064703

    [5]

    Kim W, Jun I, Kokorowski M 2010 IEEE Trans. Nuc. Sci. 57 3143

    [6]

    Rubinstein R Y, Ridder A, Vaisman R 2013 Fast Sequential Monte Carlo Methods for Counting and Optimization (Hoboken: John Wiley Sons, Inc.)

    [7]

    Landau D P, Binder K 2014 A Guide to Monte Carlo Simulations in Statistical Physics (New York: Cambridge University Press)

    [8]

    Penn D R 1987 Phy. Rev. B 35 482

    [9]

    Mott N F, Sir H S, Massey W 1949 The Theory of Atomic Collisions (Oxford: Clarendon Press)

    [10]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066

    [11]

    Joy D C, Joy C S 1995 Microscopy Microanal. 1 109

    [12]

    Raczka R, Raczka A 1958 Phys. Rev. 110 1469

    [13]

    Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press)

    [14]

    Ding Z J, Shimizu R 1996 Scanning 18 92

    [15]

    Frhlich H, Mitra T K 1968 J. Phys. C 1 548

    [16]

    Ganachaud J P, Mokrani A 1995 Surf. Sci. 334 329

    [17]

    Fakhfakh S, Jbara O, Fakhfakh Z 2009 IEEE Conf. Electr. Insul. Dielectr. Phenomena 2009 441

    [18]

    Fang Z Q, Hemsky J W, Look D C, Mack M P, Molnar R J, Via G D 1997 MRS Proceed. 482 881

    [19]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [20]

    Feng G B, Cao M, Yan L P, Zhang H B 2013 Micron 52-53 62

    [21]

    Feng G B, Wang F, Cao M 2015 Acta Phys. Sin. 64 227901 (in Chinese) [封国宝, 王芳, 曹猛 2015 物理学报 64 227901]

  • [1]

    Zhang N, Cui W Z, Hu T C, Wang X B 2011 Space Elec. Tech. 38 38 (in Chinese) [张娜, 崔万照, 胡天存, 王新波 2011 空间电子技术 38 38]

    [2]

    Chen J R, Wu X D 1999 Space Elec. Tech. 1 19 (in Chinese) [陈建荣, 吴须大 1999 空间电子技术 1 19]

    [3]

    Sazontov A, Buyanova M, Semenov V, Rakova E, Vdovicheva N, Anderson D 2005 Astrophys. J. 12 053102

    [4]

    Tan C C, Ong K S 2010 Rev. Sci. Instrum. 81 064703

    [5]

    Kim W, Jun I, Kokorowski M 2010 IEEE Trans. Nuc. Sci. 57 3143

    [6]

    Rubinstein R Y, Ridder A, Vaisman R 2013 Fast Sequential Monte Carlo Methods for Counting and Optimization (Hoboken: John Wiley Sons, Inc.)

    [7]

    Landau D P, Binder K 2014 A Guide to Monte Carlo Simulations in Statistical Physics (New York: Cambridge University Press)

    [8]

    Penn D R 1987 Phy. Rev. B 35 482

    [9]

    Mott N F, Sir H S, Massey W 1949 The Theory of Atomic Collisions (Oxford: Clarendon Press)

    [10]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066

    [11]

    Joy D C, Joy C S 1995 Microscopy Microanal. 1 109

    [12]

    Raczka R, Raczka A 1958 Phys. Rev. 110 1469

    [13]

    Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press)

    [14]

    Ding Z J, Shimizu R 1996 Scanning 18 92

    [15]

    Frhlich H, Mitra T K 1968 J. Phys. C 1 548

    [16]

    Ganachaud J P, Mokrani A 1995 Surf. Sci. 334 329

    [17]

    Fakhfakh S, Jbara O, Fakhfakh Z 2009 IEEE Conf. Electr. Insul. Dielectr. Phenomena 2009 441

    [18]

    Fang Z Q, Hemsky J W, Look D C, Mack M P, Molnar R J, Via G D 1997 MRS Proceed. 482 881

    [19]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [20]

    Feng G B, Cao M, Yan L P, Zhang H B 2013 Micron 52-53 62

    [21]

    Feng G B, Wang F, Cao M 2015 Acta Phys. Sin. 64 227901 (in Chinese) [封国宝, 王芳, 曹猛 2015 物理学报 64 227901]

  • [1] 刘曰利, 赵思杰, 陈文, 周静. SiO2/聚四氟乙烯复合介质材料热性能和介电性能的数值模拟. 物理学报, 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [2] 宋利伟, 石颖, 陈树民, 柯璇, 侯晓慧, 刘志奇. 地下黏弹性介质波动方程及波场数值模拟. 物理学报, 2021, 70(14): 149102. doi: 10.7498/aps.70.20210005
    [3] 高旭东, 杨得草, 魏雯静, 李公平. 电子束对ZnO和TiO2辐照损伤的模拟计算. 物理学报, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [4] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [5] 马国亮, 杨剑群, 李兴冀, 刘超铭, 侯春风. 电子辐照聚乙烯/碳纳米管拉伸变形机理. 物理学报, 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [6] 马国亮, 李兴冀, 杨剑群, 刘超铭, 田丰, 侯春风. 电子辐照LDPE/MWCNTs复合材料的熔融与结晶行为. 物理学报, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [7] 封国宝, 王芳, 曹猛. 电子辐照聚合物带电特性多参数共同作用的数值模拟. 物理学报, 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [8] 全荣辉, 韩建伟, 张振龙. 电子辐照下聚合物介质内部放电模型研究. 物理学报, 2013, 62(24): 245205. doi: 10.7498/aps.62.245205
    [9] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究. 物理学报, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [10] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [11] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [12] 胡建民, 吴宜勇, 钱勇, 杨德庄, 何世禹. GaInP/GaAs/Ge三结太阳电池的电子辐照损伤效应. 物理学报, 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [13] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟. 物理学报, 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [14] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟. 物理学报, 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
    [15] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [16] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [17] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [18] 袁行球, 陈重阳, 李 辉, 赵太泽, 郭文康, 须 平. 电子束离子阱中高价态离子演化过程的数值模拟. 物理学报, 2003, 52(8): 1906-1910. doi: 10.7498/aps.52.1906
    [19] 王艳辉, 王德真. 介质阻挡均匀大气压辉光放电数值模拟研究. 物理学报, 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
    [20] 王震遐, 李学鹏, 余礼平, 马余刚, 何国伟, 胡岗, 陈一, 段晓峰. 电子辐照诱发固态相变导致的氮化硼纳米结构生长. 物理学报, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
计量
  • 文章访问数:  3244
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-13
  • 修回日期:  2016-12-20
  • 刊出日期:  2017-03-05

电子辐照电介质样品带电泄放弛豫特性研究

  • 1. 中国空间技术研究院西安分院, 国家级空间微波技术重点实验室, 西安 710000;
  • 2. 西安交通大学, 电子物理与器件教育部重点实验室, 西安 710049
  • 通信作者: 崔万照, cuiwanzhao@163.com
    基金项目: 国家自然科学基金重点项目(批准号:U1537211)、中国博士后科学基金(批准号:2016M602944XB)和空间微波技术重点实验室基金(批准号:9140C530101140C53231,9140C530101150C53011)资助的课题.

摘要: 电子照射电介质材料的带电效应对介质微波部件的微放电现象有着重要影响.本文采用数值模拟的方法研究电子照射介质样品带电后的弛豫泄放过程.对入射电子与样品的相互作用考虑了弹性和非弹性碰撞过程,采用蒙特卡罗方法进行数值模拟;对沉积在样品内部的电荷泄漏过程则采用考虑电荷迁移、扩散以及俘获等过程的时域有限差分法进行处理.模拟了介质样品在带电泄放弛豫过程中的内部电荷和电位分布以及弛豫暂态特性,并分析了包括样品厚度、电子迁移率以及俘获密度在内的样品参数对泄放弛豫过程的影响.计算结果表明:在介质样品带电泄放的弛豫过程中,样品内部的总电荷量和表面电位逐渐减弱到一个与俘获密度直接相关的终态值;迁移率的增大会类线性比例地减少泄放时间常数,电荷泄放量随着样品厚度的增加呈现先增后减的趋势,而泄放量比随俘获密度增大从1近指数关系地减小为零.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回